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PREFACE

One of the most highly visible types of products in the semiconductor mar-
ketplace today is the 16-bit microprocessor. Five major 16-bit processor
families are currently available: the 99000 from Texas Instruments, the 8086
from Intel, the 68000 from Motorola, the Z8000 from Zilog, and the 16000
from National Semiconductor. These manufacturers are presently in compe-
tition to establish market share in the 16-bit marketplace, This book focuses
on just one of the newest of these products, the 99000 family of 16-bit
microprocessors from Texas Instruments.

Everyone involved in the design of electronic systems involving micro-
processors and microcomputers must have a thorough knowledge of three
primary areas: microcomputer architecture, microcomputer software, and
hardware interface techniques. However, most of the books presently avail-
able on the subject stress the architecture of microprocessors, their instruc-
tion sets, and programming techniques. Typically, very little information is
provided on hardware design and interface techniques. This leaves a gap in
one’s understanding of how a microprocessor interacts and interfaces with
its memory and I/O subsystems. This information is the key to successful
application of microcomputer systems. This book closes the gap between the
study of microprocessors and microcomputer systems by putting equal em-
phasis on the subjects of microprocessor architecture, assembly language
programming, and hardware interface techniques.

The material presented in the book includes topics common to 8-bit
microprocessor technology, such as microprocessor internal architecture,
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microcomputer system architecture, instruction execution, addressing §
maodes, instruction set, programming techniques, bus cycles, program and i

data storage memory subsystems, input/output circuitry, and interrupt

and exception processing. However, the advent of 16-bit microprocessor
technology has led to the introduction of newer system concepts, such as
pipelining, instruction prefetch, microcoding, illegal instruction detection,
macroinstruction emulation, user and supervisor modes of operation, bus f ' NTROD U CT' ON
demultiplexing, memory paging, memory segmentation, memory mapping, i

error detection and correction, and cache memory. Detailed coverage of

these more modern topics is also provided in this book. TD MlCROPROCESSDRS

Use of the book does require some prior knowledge of basic digital ‘
¥ £ electronics. This background is at a level consistent with but not necessarily |
i as extensive as the mnzria.l covered in earlier Prentice-Hall books: Integrated ] AN D M I C R OC O M P UTE R S
Digital Electronics, Walter A. Triebel, 1979, and Handbook of Semiconduc-
tor and Bubble Memories, Walter A. Triebel and Alfred E. Chu, 1982.
i We would like to express special appreciation to Dr. Jerry Van Aken
for his worthwhile input on the 99000 microprocessor. i
Every effort has been made to provide up-to-date information on the i
devices covered in the book. However, it is recommended that readers check j
with the manufacturer for the most recent data.

1.1 INTRODUCTION
AVTAR SINGH

WALTER A. TRIEBEL The most recent advances in computer system technology have been closely

related to the development of high-performance 16-bit microprocessors and
their microcomputer systems. During the last three years, the 16-bit micro-
processor market has matured significantly. Today, several complete 16-bit
microprocessor families are available. They include support products such as
large-scale-integrated peripheral devices, development systems, emulators,
and high-level software languages. Over the same period of time, these
higher-performance microprocessors have become more widely used in the
design of new electronic equipment and computers.

This book represents a detailed study of one of the newest 16-bit
microprocessors, the 99000 from Texas Instruments. In this chapter we
begin our study of microprocessors and microcomputers. The following
topics are discussed:

. The digital computer

. Mainframe computers, minicomputers, and microcomputers
- Hardware elements of the digital computer system

- General architecture of a microcomputer system

- Types of microprocessors and single-chip microcomputers

Qv b N
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1.2 THE DIGITAL COMPUTER

As a starting point, let us consider what a computer is, what it can do, and
how it does it. A computer is a digital electronic data processing system.
Data are input to the computer in one form, processed within the computer,
and the information that results is either output or stored for later use.
Figure 1.1 shows a modern computer system.

Figure 1.1 Modern large-scale computer. (Courtesy of International
Business Machine Corp.)

Computers cannot think about how to process data that were input.
Instead, the user must tell the computer exactly what to do. The procedure
by which a computer is told how to work is called programming and the
person who writes programs for a computer is known as a programmer. The
result of the programmer’s work is a set of instructions for the computer to
follow. This is the computer’s program. When the computer is operating, the
instructions of the program guide it step by step through the task that is to
be performed.

For example, a large department store can use a computer to take care
of bookkeeping for its customer charge accounts. In this application, data
about items purchased by the customers, such as price and department, are
entered into the computer by an operator. These data are stored in the com-
puter under the customer’s account number. On the next billing date, the
data are processed and a tabular record of each customer’s account is output
by the computer. These statements are mailed to the customers in the form
of bills.
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In a computer, the program controls the operation of a large amount of
electronic circuitry. It is this circuitry that actually does the procéssing of
data. Electronic computers first became available in the 1940s. These early
computers were built with vacuum-tube electronic circuits. In the 1950s, a
second generation of computers was built. During this period, transistor
electronic circuitry, instead of tubes, was used to produce more compact and
more reliable computer systems. When the integrated circuit (IC) came into
the electronic market during the 1960s, a third generation of computers ap-
peared. With ICs, industry could manufacture more complex, higher-speed,
and very reliable computers.

Today, the computer industry is continuing to be revolutionized by the
advances made in integrated-circuit technology. It is now possible to manu-
facture large-scale integrated circuits (LSI) that can form a computer with
just a small group of ICs. In fact, in some cases, a single IC can be used.
These new technologies are rapidly advancing the low-performance, low-cost
part of the computer marketplace by permitting simpler and more cost effec-
tive designs.

1.3 MAINFRAME COMPUTERS, MINICOMPUTERS,
AND MICROCOMPUTERS

For many years the computer manufacturers’ aim was to develop larger and
more powerful computer systems. These are what are known as large scale or
mainframe computers. Mainframes are always general-purpose computers.
That is, they are designed with the ability to run a large number of differ-
ent types of programs. For this reason, they can solve a wide variety of
problems.

For instance, one user can apply the computer in an assortment of
scientific applications where the primary function of the computer is to
solve complex mathematical problems. A second user can apply the same
basic computer system to perform business tasks such as accounting and in-
ventory control. The only difference between the computer systems used in
these two applications could be their programs. In fact, today many com-
panies use a single general-purpose computer to resolve both their scientific
and business needs.

Figure 1.1 is an example of a mainframe computer manufactured by
International Business Machines Corporation (IBM). Because of their high
cost, mainframes find use only in central computing facilities of large busi-
nesses and institutions.

The many advances that have taken place in the field of electronics over
the past two decades have led to rapid advances in computer system tech-
nology. For instance, the introduction of small-scale integrated circuits
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(8SIs), followed by medium-scale integrated circuits (MSIs) and large-scale
integrated circuits (LSIs), has led the way in expanding the capacity and per-
formance of the large mainframe computers. But at the same time, these ad-
vances have also permitted the introduction of smaller, lower-performance,
lower-cost computer systems.

As computer use grew, it was recognized that the powerful computing
capability of a mainframe was not needed by many customers. Instead,
easier access to a machine with smaller capacity was required. It was for this
reason that the minicomputer was developed. Minicomputers, such as that
shown in Fig. 1.2, are also digital computers and are capable of performing
the same basic operations as the earlier, larger systems. However, they are
designed to provide a smaller functional capability. The processor section of
this type computer is typically manufactured using SSI and MSI electronic
circuitry.

Figure 1.2 Minicomputer system. (Courtesy of Texas Instruments,
Incorporated.)

Minicomputers have found wide use as general-purpose computers, but
their lower cost also allows their use in dedicated applications. A computer
used in a dedicated application represents what is known as a special-purpose
computer. By “special-purpose computer” we mean a system that has been
tailored to meet the needs of a specific application. Examples are process
control computers for industrial facilities, data processing systems for retail
stores, and medical analysis systems for patient care. Figure 1.3 shows a
minicomputer-based retail store data processing system.

The newest development in the computer industry is the microcom-
puter. The microcomputer represents the next step in the evolution of the
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Figure 1.3 Point-of-sale system. (Courtesy of Sweda International,
Inc.)

computer. It is designed to be smaller and to provide less capability than a
minicomputer, at a much lower cost.

The heart of the microcomputer system is the microprocessor. A micro-
processor is a general-purpose processor built into a single IC. It is an
example of an LSI device. Together with the use of LSI circuitry in the
microcomputer have come the benefits of smaller size, lighter weight, lower
cost, reduced power requirements, and higher reliability.

The low cost of microprocessors, which can be as low as $1, has made
possible the use of computer electronics in a much broader range of prod-
ucts. Figures 1.4 and 1.5 show some typical systems in which a microcom-
puter is used as a special-purpose computer.

Microcomputers are also finding wide use as general-purpose computers,
Figures 1.6 and 1.7 show examples of a home computer and a personal com-
puter, In fact, microcomputer systems designed for the high-performance
end of the microcomputer market are rivaling the performance of the lower-
performance minicomputers and at much lower cost to the user.



Figure 1.6 Home computer. (Courtesy of Texas Instruments, Incorpo-
rated.)

Figure 1.5 Electronic toy. (Courtesy of Texas Instruments, Incorpo-
rated.)

Figure 1.7 Personal computer. (Courtesy of Texas Instruments, Incor-
porated. )
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1.4 HARDWARE ELEMENTS
OF THE DIGITAL COMPUTER SYSTEM

The hardware of a digital computer system is divided into four functional
sections. The block diagram of Fig. 1.8 shows the four basic units of a
simplified computer: the input unit, central processing unit, memory unit,
and output unit. Each section has a special function in terms of overall com-
digital computer. (From Walter

puter operation.
Memory |
unit
A. Triebel, Integrated Digital

Lanita) Output | Electronics, © 1979, Adapted by
pm::::mg unit permission of Prentice-Hall, Inc.,
Englewood Cliffs, N.J.)

Figure 1.8 Block diagram of a

Input
unit

The central processing unit (CPU) is the heart of the computer system.
It is responsible for performing all arithmetic operations and logic decisions
initiated by the program. In addition to arithmetic and logic functions, the
CPU controls overall system operation.

On the other hand, the input and output units are the means by which
the CPU communicates with the outside world. The input unit is used to in-
put information and commands to the CPU for processing. For instance, a
Teletype terminal can be used by the programmer to input a new program.

After processing, the information that results must be output. This
output of data from the system is performed under control of the output
unit, Examples of ways of outputting information are as printed pages pro-
duced by a high-speed printer or to display it on the screen of a video display
terminal.

The memory unit of the computer is used to store information such as
numbers, names, and addresses. By ‘“store” we mean that memory has the
ability to hold this information for processing or for output at a later time.
The programs that define how the computer is to process data also reside in
memory.

In computer systems, memory is divided into two sections, known as
primary storage and secondary storage. They are also sometimes called
internal memory and external memory, respectively. External memory is
used for long-term storage of information that is not in use. For instance, it
holds programs, files of data, and files of information. In most computers,
this part of memory employs storage on magnetic media such as magnetic
tapes, magnetic disks, and magnetic drums. This is because they have the
ability to store large amounts of data.

Sec. 1.6 General Architecture of a Microcomputer System 2

On the other hand, internal memory is a smaller segment of memory
used for temporary storage of programs, data, and information. For instance,
when a program is to be executed, its instructions are first brought from
external memory into internal memory together with the files of data and
information that it will affect. After this, the program is executed and its
files updated while they are held in internal memory. When the processing
defined by the program is complete, the updated files are returned to exter-
nal memory. Here the program and files are retained for use at a later time,

The internal memory of a computer system uses electronic memory
devices instead of storage on a magnetic-medium memory. In most modern
computer systems, semiconductor read-only memory (ROM) and random
access read/write memory (RAM) are in use. These devices make internal
memory operate much faster than external memory.

Neither semiconductor memory nor magnetic-medium memory alone
can satisfy the requirements of most general-purpose computer systems.
Because of this fact, both types are normally present in the system. For in-
stance, in a personal computer system, working storage is typically provided
with RAM while long-term storage is provided with floppy disk memory. On
the other hand, in special-purpose computer systems, such as video games,
only semiconductor memory is used. That is, the program that determines
how the game is played is stored in ROM, and data storage, such as for
graphic patterns, are in RAM,

1.5 GENERAL ARCHITECTURE OF A MICROCOMPUTER SYSTEM

Now that we have introduced the general architecture of a digital computer,
let us look at how a microcomputer fits this model. Looking at Fig. 1.9, we
find that the architecture of the microcomputer is essentially the same as
that of the digital computer shown in Fig. 1.8, It has the same functional
elements: input unit, output unit, memory unit, and in place of the CPU, an
MPU (microprocessor unit). Moreover, each element serves the same hasic
functions relative to overall system operation.

Internal memory
Program Data
storage storage External
memory memory MEMOEY,
Input Output
unit MPU s Figure 1.9 General microcomputer
system architecture.
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The difference between minicomputers, mainframe computers, and :
microcomputers does not lie in the fundamental blocks used to build the 4 Prograe Data P
computer; instead, it is in the capacity and performance of the electronics i gt interface
used to implement their blocks and the resulting overall system capacity and i
performance. As indicated earlier, microcomputers are designed with smaller ; 1 i
capacity and lower performance than either minicomputers or mainframes.

Unlike mainframe and minicomputers, a microcomputer can be imple-
mented with a small group of components. Again the heart of the computer Km‘j
system is the MPU (CPU) and it performs all arithmetic, logic, and control array
operations. However, in a microcomputer the MPU is implemented with a
single microprocessor chip instead of a large assortment of SSI and MSI logic
functions such as in minis and mainframes. Note that correct use of the term
““‘microprocessor” restricts its use to the central processing unit in a micro-
computer system.

Note that we have partitioned the memory unit into an internal
memory section for storage of active data and instructions and an external
memory section for long-term storage. As in minicomputers, the long-term
storage medium in a microcomputer is frequently a floppy disk. However,
Winchester rigid disk drives are also becoming popular when storage require-
ments are higher than those provided by floppy disks. In industrial applica- i
tions, where the environment for the equipment is rugged, bubble memories i
are also being employed as long-term storage devices.

Internal memory of the microcomputer is further subdivided into
program storage memory and data storage memory. Typically, it is imple-
mented with both ROM and RAM ICs. Data, whether they are to be inter-
preted as numbers, characters, or instructions, can be stored in either ROM
or RAM. But in most microcomputer systems, instructions for the program ' Ry D,
and data, such as look-up tables, are stored in ROM. This is because this type ~o W e on _"ﬂ 0| 05| 0. 8] D,| D
of information does not normally change. By using ROM, its storage is made = o = =] =
nonvolatile. That is, if power is lost, the information is retained. ; [ I ! = I 8] 8]'—"] = [ =

On the other hand, the numerical and character data that are to be pro- Co s, i Display
cessed by the microprocessor change frequently. They must be stored in a c, s,
type of memory from which they can be read by the microprocessor, modi-
fied through processing, and written back for storage. For this reason, data
are stored in RAM instead of ROM. G Ss

Depending on the application, the input and output sections can be im- s,
plemented with something as simple as a few switches for inputs and a few ; s,
light-emitting diodes (LEDs) for outputs. In other applications, for example s
a personal computer, the input/output (I/O) devices can be more sophis-
ticated devices, such as video display terminals and printers, just like those
employed in minicomputer systems. !

Up to this point, we have been discussing what is known as a multichip b)
microcomputer system: that is, a system implemented with a microprocessor Figure 1.10(a)
and an assortment of support circuits such as ROMs, RAMs, and 1/O peri- caleulator,

Keyboard _ C
interface

CRT display

Printer

(a)

Ry D,
Fo 5 2 R, Microcomputer Dy
<

Keyboard |25 s Mg A R, De

= s,

Block diagram of a personal computer; (b) block diagram of a
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pherals. This architecture makes for a very flexible system design. The
system’s ROM, RAM, and I/O capacity can easily be expanded by simply
adding more devices. This is the circuit configuration used in most larger
microcomputer systems. An example is the personal computer system shown
in Fig. 1.10(a).

Devices are now being made that include all the functional blocks of a
microcomputer in a single IC. This is called a single-chip microcompuier.
Unlike the multichip microcomputer, single-chip microcomputers are limited
in capacity and are not as easy to expand. For example, a microcomputer
device can have 4K (4096; K = 1024) bytes of ROM, 128 bytes of RAM,
and 32 lines for use as inputs or outputs. Because of this limited capability,
single-chip microcomputers find wide use in special-purpose computer appli-
cations. A block diagram of a calculator implemented with a single-chip
microcomputer is shown in Fig. 1.10(b).

1.6 TYPES OF MICROPROCESSORS
AND SINGLE-CHIP MICROCOMPUTERS

The primary way in which microprocessors and microcomputers are cate-
gorized is in terms of the number of binary bits in the data they process:
that is, their word length. Figure 1.11 shows that the three standard organi-
zations used in the design of microprocessors and microcomputers are 4-bit,
8-bit, and 16-bit data words.

The first microprocessors and microcomputers, introduced in the early
1970s, were all designed to process data that were arranged 4 bits wide. This
organization is frequently referred to as a nibble of data. Many of the early
4-bit devices, such as the PPS-4 microprocessor made by Rockwell Interna-

99000/9900
68000
High B8086/8088
erformance 28000
e 8008 16000
8080/8085
8048/8049
Medium
8051
performance 285(]
f 4004 Lot
Low 4040 7383
performance PPS-4
1000
COPS400
4ot B bit 16 bit

Figure 1,11 Microprocessor and single-chip microcomputer categories and rela-
tive performance.
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tional and the TMS1000 single-chip microcomputer made by Texas Instru-
ments, are still in wide use today. ‘

The low performance and limited system capabilities of these 4-bit
microcomputers limit their use to simpler, special-purpose applications.
Some common uses are in calculators and electronic toys. In these types of
equipment, low cost, not high performance, is the overriding requirement in
the selection of a processor.

In the 1973-1974 period, second-generation microprocessors were
introduced. These devices, such as Intel Corporation’s 8008 and 8080, were
8-bit microprocessors; that is, they were designed to process 8-bit (one-byte-
wide) data instead of 4-bit data.

The newer 8-bit microprocessors exhibited higher-performance opera-
tion, larger system capabilities, and greater ease of programming. They were
able to provide the system requirements for many applications that could
not be satisfied by 4-bit microcomputers. These extended capabilities led to
widespread acceptance of multichip 8-bit microcomputers for special-
purpose system designs. Examples of some of these dedicated applications
are electronic instruments, cash registers, and printers.

Somewhat later, 8-bit microprocessors began to migrate into general-
purpose microcomputer systems. In fact, the Z-80A is the host MPU in a
number of today’s popular personal computers.

Late in the 1970s, 8-bit single-chip microcomputers, such as Intel’s
8048, became available. The full microcomputer capability of this single chip
further reduced the cost of implementing designs for smaller, dedicated
digital systems. In fact, 8-bit microcomputers are still being designed for
introduction into today’s marketplace. An example is Texas Instruments’
new TMS7000 family of 8-bit microcomputers. Newer devices, such as the
TMS7000, offer one order-of-magnitude higher performance, more powerful
instruction sets, and special on-chip functions such as interval/event timers
and universal asynchronous receiver/transmitters (UARTSs).

Plans for the development of third-generation (16-bit) microprocessors
were announced by many of the leading semiconductor manufacturers in the
mid-1970s. The 9900, which was the forerunner of the 99000 that we
describe in this book, was introduced commercially in 1977. It was followed
by a number of other important devices, such as the 9981, 8086, 8088,
78000, 68000, and 99000. These devices are all high in performance and
have the ability to satisfy a broad scope of special-purpose and general-
purpose computer applications. All have the ability to handle 8-bit as well as
16-bit data words. Some can even process data organized as 32-bit words.
Moreover, their powerful instruction sets are more in line with those pro-
vided by minicomputers than of those associated with 8-bit microprocessors.

In terms of special-purpose applications, 16-bit microprocessors are
replacing 8-bit processors in applications that require very high performance:



Ea

14 Introduction to Micropi s and Micr puters Chap. 1

for example, certain types of electronic instruments. A single-chip 16-bit
microcomputer, the 9940, is also available for use in this type of application.

Sixteen-bit microprocessors are also being used in applications that can
benefit from their extended system capabilities, For instance, they are begin-
ning to be used in word processing systems. This type of system requires a
large number of character data to be active temporarily; therefore, it can
benefit from the ability of a 16-bit microprocessor to access a much larger
amount of data storage memory.

Most new personal computer designs incorporate 16-bit microproces-
sors. For example, IBM’s personal computer and Texas Instruments’ home
computer use 16-bit microprocessors to implement their microcomputers.

ASSIGNMENT

Section 1.2
1. What guides a computer as to how it is to process data?
2. What type of electronic devices are revolutionizing the low-performance, low-cost
computer market today?
Section 1.3
3. What is the principal difference between mainframe, mini-, and microcomputers?
4. What is meant by “general-purpose computer'?
5. What is meant by “special-purpose computer’?

Section 1.4

6. What are the building blocks of a general computer system?
7. What is the difference between primary and secondary storage?

Section 1.5

8. What are the basic building blocks of a microcomputer system?

9. What is the difference between program storage and data storage memory in a
microcomputer?

10. What is the difference between internal and external storage memory in a micro-
computer?

Chap. 1 Assignment 15
Section 1.6

11. What are the standard data word lengths of today’s microprocessors and microcom-
puters?

12. What is the difference between a multichip microcomputer and a single-chip micro-
computer?

13. Name five 16-bit microprocessor families.



THE 99000
MICROPROCESSOR

2.1 INTRODUCTION

Chapter 1 introduced general aspects of microprocessors and microcom-
puters. In this chapter we begin a detailed study of the 98000 microproces-
sor and its architecture. In the chapters that follow, its instruction set,
external interfaces (memory, input/output, and interrupt), and special fea-
tures such as macrostore and privileged mode are presented. The following
list outlines the topics that are covered:

1. The 99000 microprocessor

2. Block diagram of the 99000 microprocessor

3. Internal architecture of the 99000 microprocessor
4. Instruction execution

2.2 THE 99000 MICROPROCESSOR

The 99000 is one of the higher-performance 16-bit microprocessors available
in the marketplace today. As shown in Fig. 2.1, it is the third-generation
member of a family of 16-bit microprocessors and microcomputers manu-
factured by Texas Instruments. The first family member, the 9900, was
introduced in 1975. It was followed by a steady stream of new devices,
including the 9980 in 1977 and the 9940 in 1979. The second-generation
device, the 9995, was introduced in 1980, and the third-generation micro-
processor, the 99000, in 1981.

16
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99000
9995
Increasing Upward
features object
and code
functions compatibility

Figure 2.1 Evolution of the 9900/
99000 family. (Courtesy of Texas
Instruments, Incorporated.)

The 9900, 9995, and 99000 devices represent a continuity of hardware
and software based on Texas Instrument’s memory-to-memory architecture.
Even though new family members have been introduced, software compati-
bility has been maintained for all devices. That is, the instruction sets of the
newer devices are just supersets of those performed by the original 9900
microprocessor. Therefore, no modifications are required on software
written for the older processors in order to run it on the newer 9995 and
99000 processors. "

Through the evolution from the first 9900 microprocessor to today’s
99000, many enhancements have been made to the features and func-
tionality of the architecture and instruction set. For instance, on-chip
memory known as macrostore permits high-speed instruction execution and
at the same time permits custom and specialized instruction extensions to
the baseline instruction set of the 99000. Moreover, the standard instruction
set now includes additions such as signed multiply and signed divide as well
as instructions that perform multiprecision arithmetic operations. An
example of a hardware enhancement is the extension of the address reach of
the 99000 to 256K bytes. It is these kinds of improvements that have re-
sulted in the 99000’s high throughput, efficient performance, and flexible
system capabilities.

The name “99000” actually represents a family of microprocessors. At
present, two family members have been defined. The first device announced,
the 991054, is what is known as the baseline 99000. This means that it does
not contain any special-purpose on-chip macrostore. The second family
member, the 991104, is a processor designed for a specialized function. It
has the ability to perform floating-point arithmetic operations in addition to
the general-purpose capability of the 99105A. The floating-point instruc-
tions are built into its internal macrostore memory area. Throughout the
book all references to the 99000 imply that we are referencing features of
the 99105A that are common to the current family members.

All members of the 99000 family are manufactured using N-channel
metal-oxide semiconductor (NMOS) technology. They use a variation on the
basic process known as scaled MOS (SMOS), which is a high-performance
NMOS technology. It results in a 3-micrometer active device size. The base-
line 99000 chip contains approximately 25,000 transistors and when macro-
store is added, this is increased to 35,000 transistors.
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2.3 BLOCK DIAGRAM OF THE 99000 MICROPROCESSOR

Figure 2.2(a) shows a block diagram of the 99000 microprocessor. Here we
see that the leads of the device are grouped into the address bus, data bus,
memory conirol lines, bus status lines, serial I/0 interface, interrupt inter-
face, DMA interface, attached processor interface, power supply lines, and
clock signal lines. In this diagram, we have shown all signal lines to be inde-

Power supply

v V,

ot 5

T

INTREQ ————
Ag-A,, PSEL Address
Interrupt
e :xcflc, p Dt
NMI ALATCH
—
RESET MEM
o —_—
ﬁ Memory
0 control
—_
R'W
99000
DMA WoLD READY
interface
ouT
. IN o Serial 'O
o interface
10 CLK
e
Bus status
T,-BST.
Attached APP | BT, -BhTy code
processor O——m8—— 5.
interface

XTAL,/ . .
CLKIN Lkou
XTAL,

Clocks

{a)

Figure 2.2(a) Block diagram of the 99000 microprocessor. (Courtesy
of Texas Instruments, Incorporated.)
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Figure 2.2(b) Pin layout. (Courtesy of Texas Instruments, Incorpo-
rated.)

pendent. However, the 99000 is packaged in a 40-pin package. For this rea-
son, a number of its signals are actually multiplexed.

Figure 2.2(b) shows the pin layout of the 99000. Note that the address
bus and data bus signals are multiplexed over the same set of lines. These
lines are labeled A,/D, through A;4/Dy4. Furthermore, bit D 5 of the data
bus is multiplexed with two other signals, PSEL and OUT, at pin 31.



20 The 99000 Microprocessor Chap. 2

Before going further, let us look briefly at each of these signal groups
and their functions.

Address/Data Bus

The 99000 microprocessor has a 15-bit external address bus. In Fig. 2.2,
these lines are labeled A, through A;,. The binary information output on
this bus is used to specify the storage location that is to be accessed during
data transfers between the 99000 and memory, registers within memory-
mapped LSI peripherals, and 1/O-mapped input/output ports. This is a uni-
directional bus. That is, address words are output by the microprocessor
only over these signal lines. Signal line PSEL is an additional address bit that
is used to extend the address bus to 16 bits.

The data bus consists of 16 lines, Dy through Ds. This is a bidirectionai
bus instead of a unidirectional bus. Therefore, its lines are used to carry data
into or out of the microprocessor. It is over these lines that data are trans-
ferred during memory read or write operations, and for input or output of
data for LSI peripherals or other I/O devices.

Memory Control Signals

A second group of signals in Fig. 2.2 are those labeled as memory control.
They tell external memory circuitry whether or not a memory cycle is in
progress; if the memory operation is a read or write of data; and the appro-
priate instants when valid address information, read data, or write data are
on the bus.

In Fig. 2.3, each memory control signal is listed with its mnemonic,
name, and a brief description of its function. Here we find that MEM
(memory cycle) is the signal that indicates to external circuitry in the
memory subsystem that a memory cycle is in progress. Moreover, signals
ALATCH (address latch), WE (write enabie), and RD (read enable) identify
the moment that a valid address, valid write data, and valid read data, respec-
tively, are on the multiplexed address/data bus.

Another signal is provided in this group to permit use of the 99000
with slow external memory devices. This is the READY signal. Effectively, it
gives the ability to extend the bus cycle. That is, after the address is cutput
on the bus, the MPU will wait for the READY signal to be returned from the
memory system before it performs the read or write data transfer to com-
plete the memory cycle.

Serial Input/Output Interface

The serial input/output (1/0) interface is the bit-addressable input/output
path of the 99000. Looking at Fig. 2.2, we see that it consists of three signal
lines: OUT, IOCLK, and IN, These signals are listed in Fig. 2.4 together with
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Mnemonic Name Function
MEM Memory cycle 0 indicates that 8 memory cycle is in progress
WE Write enable 0 indicates that valid write deta is on the data bus
ALATCH Address latch 1 indicates that the multiplexed address/data bus
is set up to carry address data
R/W Early read/ 1 indicates that data bus lines will be carrying read
write data during data phase of the bus cycle

0 indicates that data bus lines will be carrying write
data during data phase of the bus cycle

RD Read 0 indicates that a read bus cycle is in progress and
that data can be put on the data bus

READY Ready 1 indicates that the current bus cycle can continue
through to completion

0 indicates that a wait state must be inserted intg
the current bus cycle

Figure 2.3 Memory control signals.

summaries of their functions. It is these lines that are used to interface with
bit-oriented parallel I/O ports and some special-purpose serial-interfaced LSI
peripherals.

These three I/O lines provide a bit-serial input/output mechanism. Bits
of data are output in serial form over the OUT (data output) line synchro-
nously with clock pulses at the IOCLK (I/O clock) line. Bit-serial data are
input at IN (data input).

During a bit-serial I/O operation, the I/O ports to which serial bits of
data are sent or from which they are received are identified by I/O addresses
instead of memory addresses. These addresses are also output on the system
address bus, A, through A,4. They are used either to control external multi-
plexing and decoding circuits that channel the bits of data output at OUT to
the appropriate output port, or to select data from specific input ports and
pass them onto the IN line.

Mnemonic Name Function

10CLK Input/output clock pulsed to logic O as each bit of bit-serial data is output

ouT Data output data output far the bit-serial 1/0 interface

IN Data input data input for the bit-serial I/0 interface

Figure 2,4 1/0O signals.
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Status Bus and Bus Status Codes

The 99000 outputs codes on status bus lines BST,; through BST; which iden-
tify the type of bus cycle that is being executed. Figure 2.5 is a list of the
mnemonics and names of the 16 types of bus status codes. These codes,
together with the MEM signal, indicate to external circuitry whether the
MPU is performing a memory cycle, internal cycle, I/O cycle, or special func-
tion such as a hold-state acknowledge or interrupt acknowledge. They are
decoded in external circuitry to produce control signals for demultiplexing
the address, data, and serial I/O buses.

Notice that the codes repeat for the 0 and 1 logic levels of MEM. The
group where MEM = 0 corresponds to memory cycles. For example, the
instruction acquisition (IAQ) code BST,BST,BST; = 011 indicates that an
instruction is being fetched over the data bus.

The other group, which occurs with MEM = 1, corresponds to internal
cycles and special functions such as 10, HOLDA, and RESET. An example
is the 10 code 011, which signals that an I/O operation is taking place.

MEM BST, BST, BST, Mnemonic Name
0 0 0 0 SOPL Source operand with MPILCK
0 0 0 1 SOP Source operand
0 0 1 0 1op Immediate operand
0 0 1 1 aQ Instruction acquisition
0 1 0 0 DopP Destination operand
0 1 0 1 INTA Interrupt acknow|edge
0 1 1 0 WS Workspace
0 1 1 1 GM General memary
1 ) 0 0 AUMSL ALU or macrostore with MPILCK
1 0 o 1 AUMS ALU or macrostore
1 0 1 0 RESET Reset
1 0 1 1 10 Input/output
1 1 0 0 WP Workspace pointer
1 1 0 1 ST Status register
1 1 1 0 MiD Macroinstruction detect
1 1 1 1 HOLDA Hold acknowledge

Figure 2.5 Bus status codes. (Courtesy of Texas Instruments, Incorpo-
rated.)

Interrupt Interface

The interrupt interface is used to signal the 99000 that an external device is
requesting service. There are three types of hardware interrupt inputs on
the 99000: the reset function, nonmaskable interrupt, and external user-
definable interrupts.
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The signal lines of the interrupt interface are listed in Fig. 2.6. The
RESET (reset) interrupt input is used as a hardware initialization input to
the microprocessor. On the other hand, the NMI line represents the non-
maskable interrupt input. It is typically used to implement a nonmaskable
service request for an external device. The other five lines, INTREQ and IC,
through IC;, represent a prioritized maskable interrupt interface. They can
be used to implement user-defined interrupt requests. Signal INTREQ is used
to tell the 98000 that a valid code is present, while the binary combination
at IC,IC,IC,IC; identifies the priority level of the external device that is
requesting service.

Mnemonic Name Function

INTREQ Interrupt request 0 signals that an external device is requesting
service by an interrupt
ICy1C, IC, IC, | Interrupt code code that identifies the external device
requesting service

NMI1 Nonmaskable interrupt | O indicates that the nonmaskable interrupt
is active

RESET Reset 0 indicates that the hardware reset function
is active

Figure 2.6 Interrupt interface signals.
Direct Memory Access Interface

The DMA (direct memory access) interface, which is identified in Fig.
2.2(a), is used to put the 99000 into what is known as the hold state. In
this state, the microprocessor gives up control of the system bus. It does this
by putting the address/data bus and control lines into the high-Z (high-
impedance) state and then suspending operation. In this way, an external
device such as a DMA controller can take control of the system bus and has
the ability to access directly the memory subsystem of the microcomputer.

The HOLD line is for input of the external signal that is used to initiate
transition to the hold state. When the 99000 enters this state, it acknowl-
eges this fact to external circuitry by outputting a HOLDA (hold acknowi-
edge) code on the status bus.

Attached Processor Interface

The attached processor interface corresponds to the signal line APP
(attached processor present) in the block diagram of Fig. 2.2(a). The APP
signal indicates to the 99000 that an attached processor in the system is
ready to perform a function. In response, the 99000 suspends operation and
passes control to the attached processor. The attached processor performs
the required function and then returns control to the 99000.
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Clock Signals

The 99000 contains internal clock drive circuitry. Therefore, to operate, it
needs only an external crystal. The crystal is attached between the XTAL,
and XTAL, leads as shown in Fig. 2.7(a). Note that shunt capacitors are re-
quired from each of these terminals to ground. C, and C, each have a typical
value of 5 pF. The maximum rating for the crystal is 24 MHz.

XTAL,/CLKIN XTAL,

XTAL

i

IR

c, C;

(a)

12

tha
e
- Tz

| L ——

tea

CLKOUT

(b)
Figure 2.7(a) Crystal connection; (b) CLKOUT waveform. (Courtesy
of Texas Instruments, Incorporated.)

Internally, the 24-MHz clock frequency is divided by 4 to give 6-MHz
internal operation. This corresponds to a machine cycle time of

1
Leycle = 6MHz ~ 167 ns

This time is also known as the machine state time of the 99000. The mini-
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mum duration that an external bus cycle requires is one machine state, or
167 ns. ‘

The 6-MHz system clock is provided as an output at the CLKOUT line.
Figure 2.7(b) shows this waveform. Notice that the cycle time of CLKOUT
is labeled tcg and has a nominal value of 167 ns. Its one-level pulse width
twxe and zero-level pulse width twp o both have a typical value of 73.5 ns.
The rise and fall time between the 0 and 1 levels are called tgo and tpg, re-
spectively, and have the identical maximum value of 15 ns. This signal is pro-
vided for use in synchronizing the operation of external circuitry to that of
the 99000 MPU.

If preferred, operation of the 99000 can be synchronized to an exter-
nally produced clock signal instead of generating it internally. This is done
by applying the clock signal to the CLKIN input.

2.4 INTERNAL ARCHITECTURE OF THE 99000 MICROPROCESSOR

Now that we have introduced the 99000 microprocessor and looked briefly
at its interface signals, let us proceed by examining its internal architecture.

Functional Blocks of the 99000

Figure 2.8 shows the internal architecture of the 99000. Here we find that
its key sections are the arithmetic-logic unit, internal registers, microcontrol
and control ROM, interrupt logic, MQ shift register, clock generator, and
macrostore.

The arithmetic-logic unit (ALU) is the heart of the 99000 micropro-
cessor. It is responsible for performing the mathematical operations or
logical decisions that are required during the execution of an instruction.
Notice that it has two inputs, A and B. The ALU takes these inputs and per-
forms a mathematical operation on them such as addition or subtraction or
a logical operation such as OR, AND, or exclusive-OR. The result of this
operation is provided at the output of the ALU. The ALU has the ability to
perform operations on either bytes or words of data.

The internal registers of the CPU are used to store data and status re-
quired by the MPU. For instance, the instruction register is used to store the
operation code (opcode) of the instruction that is being executed.

Three of the most important registers within the 99000 are its program
counter (PC), workspace pointer (WP), and status register (ST). They are
called user-accessible registers. This is because their contents can be loaded or
saved under software control.

The microcontrol and control ROM sections are used to decode the
instruction operation code that is held in the instruction register. Based on
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Figure 2.8 Internal architecture of the 99000. (Courtesy of Texas
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this decoding, it outputs the buffered control signals. These signals control
the sequence in which the 99000 performs internal and external operations
such that the function specified in the instruction is performed.

The interrupt logic identifies that an external device is requesting ser-
vice by the MPU through the interrupt interface. It indicates this fact to the
microcontrol section.

The M@ shift register is the most important part of the serial 1/O inter-
face. It does the serial-to-parallel conversion required for input operations
and parallel-to-serial conversion required for output operations.

The circuitry in the clock driver block generates the 6-MHz four-phase
clock signals required by the 99000. These signals synchronize the internal
and external operations of the 99000.

The last section, the macrostore, is an internal memory area of the
99000. It consists of a macro-RAM (MRAM) data storage section and a
mask-programmable macro-ROM (MROM) instruction storage section. The
purpose of macro-ROM is for on-chip storage of macroinstruction emulation
routines. Typically, macroinstruction emulation routines are used to extend
the instruction set of the 99000. This is done by implementing more com-
plex functions, such as special instructions for floating-point arithmetic.

Memory-to-Memory Architecture

The memory-to-memory architecture is unique in that all of the registers
used by the MPU for data operations and addressing are in external memory
instead of internal to the device. This type of architecture is illustrated in
Fig. 2.9(a). Moreover, these registers are simply memory locations and not
random logic circuits such as those used in register-based microprocessor
architectures.

CcPU Memary cPU Memory
I
PC =
8iig=m)
w

- | &

{a) L]

|
=]

Figure 2.9(a) Memory-to-memory architecture; (b) memory-to-memory
architecture with on-chip memory. (Courtesy of Texas Instruments,
Incorporated.)
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The important benefit of using memory instead of random logic for the
registers of the MPU is that memory can be integrated more compactly.
Memory registers can be moved onto the chip to be more consistent with
traditional microprocessor architectures. However, because of the more com-
pact nature of memory, a larger number of registers can be implemented. An
example of a microprocessor that employs an on-chip register file is the
9995. The macrostore section of the 99000 is another example of on-chip
memory. Its architecture is shown in Fig. 2.9(b).

User-Accessible Registers

As indicated earlier, by “user-accessible registers” we mean those registers
whose contents can be accessed and altered through software. Figure 2.10
shows that the 99000 has just four of these registers: the program counter
(PC), workspace pointer (WP), status register (ST), and error register (ER).

0 15

99000 Figure 2,10 User-accessible

Figure 2.11 shows the relationship between the internal registers of
the 99000. The program counter (PC) is a 16-bit register that contains the
address of the next instruction in the program that is to be fetched for
execution or the address of an immediate operand that is required during
execution of the current instruction. Actually, the least significant bit (LSB)
of PC is always zero. This is because instructions are always accessed as
words. The value in PC is multiplexed onto the address/data bus during the
address phase of an instruction-acquisition bus cycle. The instruction word
stored at this location in program storage memory is put on the data bus.
During the data-transfer part of the bus cycle, the 99000 reads the word and
stores it in its instruction register. After this, the value in PC is automatically
incremented by 2 such that it points to the next instruction or operand of
the program.
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On the other hand, the workspace pointer (WP) contains a 16-bit
address that points to the first register in a block of 16 registers in data
| storage memory. These registers are also identified in Fig. 2.11. They serve
i as source and destination registers of data operands, address registers, or
index registers. The LSB of this address is also always zero.

In Fig. 2.12, the 16-register workspace is shown in more detail. Here we
see that the registers are labeled R, through R,;. Notice also that they are
located at addresses that are displaced from the value in WP. The displace-
ment value equals twice the register number. For instance, register R, is at
address WP + 2(2) = WP + 4.

Example 2.1

Find the address of register Ry relative to the workspace pointer. Assume that the
workspace pointer contains FO00,,. Express the result in hexadecimal form.

Solution:  Adding twice the register number to the contents of WP, we get
(WP) +15(2)
(WP) + 30

Now replacing (WP) with F000,, and expressing 30 in hexadecimal form gives the
address of register 15 as

F000,s + 1E, = FO1E,,

Any of these 16 workspace registers can be used for the storage of data
or addresses; however, some also have dedicated functions. For example,
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I Memory ] [ Register use J
Address Register

i (WP} + 0000 Rg T — Shift count, multiply, divide
{WP) + 0002 R, | — Multiply, divide
{WP) + 00D4 Ry
(WP) + 0006 Ra
(WP) + 0008 Ra
(WP) + 000A Rg
(WP} + 000C Rg
(WP) + 00OE Ry BataoF
(WP) + 0010 Re address u:,';‘;‘;ﬁlv
(WP} + 0012 Rg
(WP) + 0014 Rig
(WP} + 0016 Ry — BL return address
(WP) + 0018 Ryz — I/0 base address
(WP} + 001A Ry — Old wp
(WP} +001C Ry ~QidPC
(WP) +001E Rug t  —OWdsT

Figure 2.12 Workspace registers. (Courtesy of Texas Instruments, Incorporated.)

registers R;3, Rq4, and R, are used to save the old values of the workspace
pointer, program counter, and status register, respectively, when a context
switch initiates a change in program environment. Other examples are:
register R,,, which is required for storage of a CRU base address for use in
I/O operations; register R;, which is reserved for storage of a return address
when a “branch and link” (subroutine) instruction is executed; and register
Rg, which is needed for storage of a shift count for some instructions,

The status register (ST) is another 16-bit internal register of the 99000.
Figure 2.13 shows the individual bits of this register and their meanings.
Notice that a number of these bits specify conditions that result during the
execution of an instruction. Other bits are used to enable or disable func-
tional capabilities of the 99000.

Bits in the group from ST, through ST are those that are affected by
the execution of instructions. These bits are either set or reset based on the
results produced due to the execution of an instruction. For example, after
the execution of an addition instruction, we might find changes in A>
(arithmetic greater than), EQ (equal), and C (carry). However, it should be
noted that not all instructions affect these status bits.
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Figure 2,13 Status register.

Some instructions of the 89000 can be used to examine the status of
specific bits in the status register and perform certain operations based on
whether they are set or reset. An example is the ‘“jump on equal® instruc-
tion (JEQ). It tests to see if the equal bit is set. If EQ is found to be set, a
jump is initiated to another instruction located at a displaced PC value.
Otherwise, the instruction at the next sequential value of PC is executed.

Example 2.2

Which of the status bits would you expect to be affected by an instruction that
compares two operands?

Solution:  The result of an operand comparison would be the fact that one is
greater than, less than, or equal to the other. For this reason, we would expect
changes in ST, through ST,: logical greater than (L>>), arithmetic greater than
(A>), and equal (EQ).

Bits ST, through ST,, of the status register are those that enable or
disable optional functions of the 99000. Examples are: ST, which is used
to enable what is known as the automatic arithmetic overflow detection
mechanism, and ST,, which enables the nonprivileged mode of operation.
These status bits must be set to the 1 logic level to perform their identified
functions. For instance, setting PRV to 1 enables the nonprivileged mode of
operation, and clearing it disables the nonprivileged mode.

The four least significant bits of the status register, ST, through ST,
hold an interrupt mask code. It always contains a 4-bit value equal to one
less than that of the priority level of the currently active interrupt. In turn,
all interrupts with lower priority are disabled from operating.



32 The 99000 Microprocessor Chap. 2

The last of the 99000’ user-accessible registers is the error register
(ER). Figure 2.14 shows that just three of its bits are internally imple-
mented. These bits represent internal conditions that are considered to be
errors when they occur within the 99000. For instance, if an arithmetic over-
flow occurs and this option is enabled through status bit 8Ty, the error con-
dition is flagged by automatically setting ER4 to logic 1. This bit location
can then be examined through software to identify the fact that an overflow

ERy,

has occurred.
ER,, l ER‘J

Elela e [ T

ER|2[ER«J

ERg lsnm

Arithmetic overflow _|

[llegal instruction code

Privilege violation

Figure 2.14 Error register.

The other two implemented bits of the error register, ER,; and ER 4,
represent the detection of an illegal instruction opcode during the execution
of the program and the occurrence of a privileged mode violation.

Example 2.3

What condition must exist in the status register before bit ER,, can be set due to
the occurrence of a privileged mode viclation?

Solution: The nonprivileged mode of operation must be enabled by setting PRV
(status bit ST,) to logic 1.

2.5 EXECUTION OF AN INSTRUCTION

Now that we have introduced the 99000 and its memory-to-memory archi-
tecture, let us continue by considering how it executes an instruction. As
indicated in Section 2.4, the primary difference between register architecture
and memory-to-memory architecture lies in the fact that memory-to-
memory processors, such as the 99000, perform all operations directly on
data operands in memory. Here we will describe in detail the effect of execu-
ting an addition instruction, the microstates that are performed during
execution of the instruction, the 99000’s instruction prefetch mechanism,
and bus status codes.
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Execution of an Addition Instruction

Figure 2.15(a) illustrates the execution of an instruction. Notice that the
program counter points in program memory to the instruction

A RO,R1

This instruction represents the addition of a source operand that is stored in
workspace register R, to a destination operand that is located in register
R;. Their sum, which equals the original contents of R, plus the original
contents of R, is returned to destination register R .

Warkspace Workspace
before after
99000 Memory addition addition
Ro 0014, Ry 0014,
\ Ry 0027, Ry 003845
ARO, R1 :
-“ '\ - ;
R @
ALU : :
Work space %
RVE .:
:
Rus Rig
(a) (B

Figure 2.15(a) Execution of an instruction; (b) workspace registers before and

after execution of the addition instruction. (Courtesy of Texas Instruments,
Incorporated.) ’

) The example in Fxg 2.15(b) indicates that before the addition instruc-
tion occurs, Ro contains the data word 0014,, and R, contains 0027,4.
Executing the add word instruction creates the sum

OQ1416 + 002716 =5 003315
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and stores this value in R,. The value held in R, remains unchanged. These
results are shown in Fig. 2.15(b).

Steps in the Addition Instruction

The execution of an instruction actually requires thg 99000‘1;0 go step by
step through a series of internal and external o;?eratlons. Th1§ sequence o_f
events is microcoded into the control ROM sec.tlon. Whgn an 111'structl(.>n is
fetched from program memory, it is loaded into the instruction reg}s?e_r
within the 99000. The microcontrol section decodes the opcode and‘mm-
ates the appropriate microcode sequence. The cont.rol'ROM outputs signals
that are used to sequence and time the internal ope:atlpns, and'e_xtemal bus
operations that are required to perform the processing specified by the
mm’l?::: I;.ctual sequence of operations that occur during the execution of
the instruction

A RO,R1
is shown in Fig. 2.16(a). Notice that there are six operations, of which four

are memory bus cycles and two are internal cycles.‘The sequence begi_ns with
an instruction acquisition memory bus cycle. During this cycle, the instruc-

¥

Instruction feich
Decode
Step Function Type Source fetch
Destination fetch
1 Fetch instruction Mamary Process Instruction fetch
2 Decode instruction Internal Write Decode
Fetch source operand Memory Source fetch

o v 2 w

Fetch destination operand Memory Destination fetch

Add operands Internal Process Instruction fetch

Write Decode

Write result to destination | Memory

Source fetch

v

Figure 2.16(a) Register-to-register addition sequence; (b) prefetch mechanism.
(Courtesy of Texas Instruments, Incorporated.)
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tion is fetched from the program memory. The instruction is loaded into the
instruction register of the microprocessor. This represents the instruction
fetch part of the instruction acquisition cycle.

The execution phase begins with an internal operation during which the
instruction is decoded and the appropriate microcode sequence initiated.
The microcode sequence next performs a workspace memory bus cyele
during which the source operand is read from source register R,. This
operand is applied to the A input of the ALU. After this, a second work-
space memory bus cycle is initiated to read the destination operand from
destination register R, . It is applied to the B input of the ALU.

Now the microprocessor has the data that it needs and is ready to per-
form the addition operation. This processing of operands represents the
second internal operation shown in Fig. 2.16(a). The add operation is per-
formed and the sum is obtained. The result must now be returned to destina-
tion register R, in memory. For this reason, a workspace write bus cycle is
initiated.

Intelligent Prefetch Mechanism

Looking at the instruction sequence in Fig. 2.16(a), we see that during the
two internal operations the system bus to external memory is not busy. To
make more efficient use of the system bus, the 99000 is implemented with
an intelligent instruction prefetch mechanism. With this mechanism, the
execution of consecutive instructions is overlapped. This feature is also
known as pipelining.

Figure 2.16(b) illustrates how the prefetch mechanism works. Notice
that while the first instruction is being processed, the 99000 initiates an
instruction acquisition memory bus cycle to fetch the next instruction. This
second instruction is decoded while the results from the first instruction are
being written to memory. In this way, we see that during each of the six
steps of the addition instruction, the system bus is in use. This effectively
eliminates any overhead due to the instruction acquisition part of the
instruction execution cycle, thereby decreasing the amount of time it takes
to execute an instruction. The results of prefetching instructions are im-
proved system throughput, more efficient use of the system bus, and expan-
sion of the bus bandwidth.

Earlier we said that the prefetch mechanism of the 99000 is intelligent.
This is because it has the ability to detect automatically whether or not the
present instruction is a branch or a jump type of instruction and can calcu-
late the new program counter value before another instruction is fetched.
Instead of fetching the next sequential instruction and then having to discard
it, the program counter has already been modified such that the new instruc-
tion specified by the branch or jump is read and executed. This microcode
sequence is shown in Fig. 2.17.
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L
Instruction fetch
Decode
N Process
Instruction fetch
Decode
{} Figure 2,17 Prefetch sequence for
the jump instruction.

Bus Status Codes of the Addition Instruction

During each step of the instruction execution sequence, a bus status code is
output on status bus lines MEM and BST, through BST;. As shown earlier,
the 4 bits of this code are organized as MEMBST, BST,BST; and the code
indicates to external circuitry what type of operation is being performed by
the 99000.

To understand this idea better, let us look at the bus status codes that
occur during execution of the addition instruction we have been using as an
example. The internal and external operations that take place during the
execution of the register-to-register addition instruction are shown in Fig.
2.18(a). Notice that during step 1 the addition instruction is fetched from
memory. This represents an instruction acquisition bus cycle and is accom-
panied by the IAQ code, which equals 0011, on the status bus.

Step 2 corresponds to the decoding of the addition instruction. This is
an internal operation. But at the same time an external bus operation is per-
formed to write the results of the previous instruction to memory. It is this
destination write that determines which bus status code is output. Since we
have not indicated what type of instruction this was, its mnemonic and
status code are represented by a don’t know state (X).

During the next two steps, the source and destination operands are
fetched from memory. Since the data are stored in registers R, and R, of
the workspace, their data bus cycles are accompanied by the workspace
transfer (WS) bus status code, 0110.

The next operation corresponds to the internal addition of the two
operands. A memory operation is also performed during this interval to pre-
fetch the next instruction. Therefore, it is again accompanied by the IAQ
code. During the last step, the new instruction is decoded and the results of
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Execution of an Instruction

Step Internal External Status code name | Status eode
1 Process previous *Fetch addition instruction 1AQ 0011
instruction
2 Dmode‘addiwm Write result of previous XXX XXXX
instruction instruction

3 *Read source operand for WS 0110
add instruction

4 *Read destination operand WS 0110
for add instruction

5 Add source and Fetch next instruction 1aQ 0011

destination operands

6 Decode next instruction | *Write result of addition 10 WS 0110

destination
“Memory cycles associated with the addition instruction
(a)
Step Internal External Status code name | Status code
1 Process previous Fetch jump instruction I1AQ 0011
instruction
2 Decode jump instruction | Write results of previous XXX XXXX
instruction
3 Process jump instruction No operation AUMS 1001
4 No operation Fetch instruction from 1AQ 0011
new location
5 Decode new instruction No operation AUMS 1001

{b)

Figure 2.18(a) Status codes for the addition instruction execution
sequence; (b) status codes for execution of the jump instruetion.
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_thf_e addition instruction are written to memory. The destination register R,
is in the workspace; therefore, the WS bus status code is again output.
The bus status codes that are output during a jump instruction are

shovyn in Fig. 2.18(b). In this case, the 99000 processes the instruction im-
mediately after decoding. During this time, no bus activity takes place;
therefore, the internal arithmetic logic unit bus status code AUMS = 1001 is,
Outpl:lt. This is followed by the fetch of an instruction from the new address
locatl?n accompanied by bus status code TAQ = 0001. Finally, the new in-
struction is decoded without an external bus cycle occurring for the jump

instruction. This gives another AUMS = 1001 bus status code.
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ASSIGNMENT

Section 2.2

. Name the technology used to fabricate the 99000 family of microprocessors.
. Name three advanced features of the 99000 that are not available on the older 9900

microprocessor.

. What is meant by “macrostore”?
. What is the main distinction between the 99105A and 99110A devices?

Section 2.3

W 0o -~ &, on

10.

1L
12,
13.

. What is the size of the 39000’s package?

. Which lines are used to output memory addresses?

. Which lines form the data bus?

. What function is served by the READY input?

. Which line is used to input data during a serial input operation?

What lines are involved in the selection and output of data to an output port if the
output operation is performed through the serial output interface?

What function is served by the bus status lines?

How many maskable interrupts are allowed in a 99000 system?

How does the 99000 acknowledge a DMA request?

Section 2.4

14.
15.
16.
17.
18.
19.

20.
21,
22,

23.
24,
25.

What are the three main user-accessible registers of the 980007
What is the function of the ALU?
What function is served by microcontrol and the control ROM?
Which register is involved in serial [/O operations?
Specify the purpose of both MRAM and MROM.
t is meant by a memory-to-memory architecture? How does it differ from a
register-based microprocessor architecture?
What function is served by the program counter?
Explain the function of the workspace pointer.
If the WP is loaded with 20004, identify each of the workspace registers and give
their addresses.
Which workspace registers do not have an associated dedicated function?
What is the purpose of the status register?
Why is an error register provided within the 99000?
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Section 2.5

26.

21,

28.

After an instruction is fetched, which part of the processor initiates its execution
steps?

Define “prefetch mechanism.” How does it affect the processor’s speed of program
execution?

What signals are used by the processor to identify external memory operations during
an instruction’s execution? Which lines carry these output signals?
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939000 MICROPROCESSOR
PROGRAMMING |

3.1 INTRODUCTION

Having introduced the architecture of the 99000 microprocessor in Chapter
2, we are now ready to begin investigating its instruction set and some ele-
mentary programming concepts. In this chapter we begin by developing a
software model of the 99000. This is followed by material that introduces
the concepts of assembly language and machine language together with the
symbols, notations, and formats used when coding them. Next, the ad-
dressing modes of the 99000 are described and their functions demonstrated.
After this, we take our first look at the instruction set of the 99000. The
data transfer, arithmetic, logical, and shift instructions are described in de-
tail. The topics are presented in the following order:

. Software model of the 99000
Assembly and machine languages
Instruction execution notations
Addressing modes

Instruction set

Data transfer instructions
Arithmetic instructions

. Logic instructions

. Shift instructions

© PP o
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3.2 SOFTWARE MODEL OF THE 99000 MICROPROCESSOR

The purpose of developing a software model is to aid the programmer in
understanding the operation of the microcomputer system from a software
point of view. To be able to program a microprocessor, one does not need to
know all of its hardware features. For instance, we do not necessarily need
to know the function of the signals at its various pins, their electrical connec-
tions, or their switching characteristics. Moreover, the function, interconnec-
tion, and operation of the internal circuits of the microprocessor also need
not normally be considered.

What is important to the programmer is to know the various registers
within the device and understand their purpose, functions, and operating
capabilities and limitations. Furthermore, it is essential to know how exter-
nal memory is organized and how it is addressed to obtain instructions and
data.

A software model for the 99000 that includes its internal registers and
external memory area is illustrated in Fig. 3.1. Looking at this model, we
find four internal registers: the program counter (PC), workspace pointer
(WP), status register (ST), and error register (ER). Each of these registers
was discussed in detail in Chapter 2. For this reason, let us simply review
them briefly here. This time we will concentrate on their relationship to
software.

The program counter is a 16-bit register that produces word addresses
for accessing the program storage part of memory. From a software point of

Memory

o]
en o] T¢] :
Work space

ALU Ris

General memory

Figure 3.1 Software model of the 99000 microprocessor.
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view, we must know that at any instant the contents of PC represent the ad-
dress of the next instruction that is to be fetched for execution, or imme-
diate data for the current instruction. In this way, we see that it determines
the sequence in which instructions are executed.

In the 99000 microcomputer system, sequential word addresses differ
by 2 and all instructions are stored at word address boundaries. Therefore,
PC is automatically incremented by 2 after each instruction fetch. One
exception is if the instruction that is currently being executed has the ability
to modify the value in PC. In this case, the instruction is not fetched from
the next sequential location in memory. Instead, the instruction fetch is
from somewhere else in program storage memory. Examples of instructions
that have the ability to modify the value in PC are those in the jump and
branch groups.

When processing data, the 99000 uses a file of 16-word-wide registers in
external memory as a working area. This area is the workspace and its
registers are workspace registers R, through R ;.

These registers can be used to store intermediate results, pointers,
counters, or any other type of information. For example, the addition
instruction

A RO,R1

uses register R, as the storage location of its source operand and R, as the
storage location of its destination operand. The result of the addition ends
up in destination register R .

As indicated in Chapter 2, some of the registers serve special functions.
For instance, R3, R4, and R,s are required to save the old contents of
internal registers WP, PC, and ST, respectively, whenever a context switch is
initiated.

Registers in the workspace are accessed by the 99000 using the address
held in its workspace pointer register. The contents of WP is the address of
the first register in the workspace. This is the register denoted by R, and is
located at the lowest workspace address. Addresses of the other registers in
the workspace are formed by adding a number equal to twice the register
number to the value in the workspace pointer register. For example, if WP
contains 0120,¢, R, is located at 0120,4 and R, is located at 0120, + 2,
=0122,,.

It is necessary to initialize the WP at the beginning of the program with
the value of the address for the starting workspace. This can be done by
executing a special instruction that is provided for loading the workspace
pointer register from memory. If WP is not loaded correctly, instructions
that involve workspace register references may not execute correctly.

During execution of the program, new workspaces can be created by
simply changing the value in WP, This can be done under software control
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with the “load workspace’” instruction. Moreover, certain functions, such as
interrupts and extended operations, automatically change the value in WP.

The status register (ST) is also 16 bits long. It keeps track of the status
of the processor as the instructions of the program are executed. From a
software point of view, the first 6 bits of this register, ST, through ST, are
the most important. They are the logical greater than (L>>), arithmetic
greater than (A>), equal (EQ), carry (C), arithmetic fault (AF), and odd-
parity (OP) bits, respectively. These flags reflect the status of the processor
that results due to the execution of an instruction. For example, the carry
bit is set to indicate when a carry out occurs from the MSB as a result of an
arithmetic operation.

Software can reference the flag bits of the status register and, based on
their logic level, make a decision. For instance, a “jump on carry” instruc-
tion checks the carry bit, If C is logic 0, the next sequential instruction
executes. On the other hand, if it is 1, a jump is initiated to another place in
the program.

The error register is the last of the 99000’s internal user-accessible
registers. It is also 16 bits long; however, just 3 of its bits are implemented.
They are the arithmetic overflow bit ER,, illegal opcode detection bit ER,5,
and privileged mode violation bit ER,,. These bits are set if their corres-
ponding error condition occurs during the execution of an instruction.

External memory in the 99000 microcomputer system is organized as
16-bit words. These words are selected by the 15-bit address output on lines
A, through A,,. Notice that external addresses are 15 bits long, not 16 as in
the internal PC and WP registers. Their LSB is truncated when the address is
output to the memory subsystem, Thus memory word addresses proceed as
0000,5, 0002,5, 0004 up through FFFE,,. This gives a total memory
storage capacity of 32K words.

Some of the instructions of the 99000 also allow access to these word
locations in memory as an odd or even byte. Which byte is to be accessed is
determined by the LSB of the address, A5, which is retained internal to the
99000. For this reason, byte addresses proceed sequentially as 0000,
0001,4, 00024 through FFFF ;. Even-addressed bytes reside at even address
boundaries and odd-addressed bytes at odd address boundaries. Therefore,
the address space of the 99000 can also be expressed as 64K bytes.

The memory address space of the 99000 can be expanded in a paged
mode to 64K words (128K bytes). This is done by using an extended 16-bit
address that consists of A, through A, and PSEL. STy is the map select bit
of the status register. Its logic level is complemented and then multiplexed
onto the Ds/PSEL bus line during the address phase of all bus cycles. This
bit can be manipulated under software control to select one of two 64K-
byte pages of memory.

For the purpose of programming, memory can be viewed as two inde-
pendent sections: a program segment that contains instructions of the pro-
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gram and a data segment that contains workspaces and general memory for
storage of data. With this architecture, the 99000 has the ability to perform
memory-to-memory operations. Since the workspace of the 99000 resides in
memory, a register-to-register operation is also a memory-to-memory opera-
tion. For instance, we can directly add the contents of two workspace regis-
ters. Moreover, for input/output, data can be transferred directly between
memory and I/O devices.

Using segmentation, the memory subsystem of the 99000 can be parti-
tioned into a 128K-byte code segment and 128K-byte data segment. This
gives a total address space of 256K bytes. To achieve this configuration,
memory bus status codes must be decoded with external circuits to produce
enable signals for the code segment and data segment of memory.

3.3 ASSEMBLY LANGUAGE AND MACHINE LANGUAGE

Now that we have introduced the software model of the 99000, let us
continue with the concepts of assembly language and machine language
instructions and the symbols, notations, and formats that are used in their
descriptions. It is essential to become familiar with these ideas before at-
tempting to learn the functions of the instructions in the instruction set and
their use in writing programs.

Assembly Language Instructions

Assembly language instructions are provided to describe each of the basic
operations that can be performed by a microprocessor. They are written
using alphanumeric symbols instead of the Os and 1s of the microprocessor’s
machine code. An example of a short assembly language program is shown in
Fig. 3.2(a). The assembly language statements are located on the left. Fre-
quently, comments describing the statements are included on the right. This
type of documentation makes it easier for programmers to write, read, and
debug code. By the term “code” we mean programs written in the language
of the microprocessor. Programs written in assembly language are called
source code.

Each instruction in the source program corresponds to one assembly
language statement. The statement must specify which operation is to be
performed and what data operands are to be processed. For this reason, an
instruction can be divided into two separate parts: its opcode and its oper-
v ands. The opcode is the part of the instruction that identifies the operation
= that is to be performed. For example, typical operations are add, subtract, or
{ load immediate.

In assembly language, we assign a unique one-, two-, or three-letter
combination to each operation. This letter combination is referred to as a
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mnemonic for the instruction. For instance, the 99000 assembly language
mnemonics for add, subtract, and load immediate are A, S, and LI,
respectively.

Operands identify the data that are to be processed by the micropro-
cessor as it carries out the operation specified by the opcode. For instance,
in an instruction that adds the contents of two workspace registers R, and
R;, Ry and R, are the operands. An assembly language description of this
instruction is

A RO,R1

IDT 'EXAMPL'
* CLEAR SCREEN .
® THIS ROUTINE FILLS THE CHARACTER BUFFER WITH NULLS, AND ¢
® MOVES THE CURSOR TO HOME POSITION. '
® CALLED BY THE MAIN ROUTINE ONLY. .
® NO PARAMETERS ARE PASSED. ¢

RORG

OPTION XREF

REF  ENDSCR,WCURCH, UPCURS , BEGSCR
CLRSCR LI  R8,BEGSCR POINTS TO START OF CHAR BUFFER

LI  R9,ENDSCR POINTS TO END OF CHAR BUFFER

MOV R7T,R6 GET FLAG REGISTER

ANDI R6,>0080 IS SCREEN PROTECTED?

JNE CLR2 YES- CLEAR ONLY UNPROTECTED CHAR
CLR3  CLR "RB+ CLEAR THE CHAR AND BUMP POINTER

C  R8,R9 IS IT THE LAST BUFFER CHAR?

JNE CLR3 NO- LOOP

JMP  HOMCUR REPOSITION CURSOR TO "HOME®
CLR2 MOV "*RB,R6 GET THE CHARACTER

ANDI R6,>8000 IS CHAR PROTECTED?

JNE CLRY YES- SKIP THE "CLEAR® STEP

CLR "R8 CLEAR THE CHAR
CLRY  INCT RS BUMP BUFFER POINTER

C  R8,RY IS IT THE LAST BUFFER CHAR?

JNE CLR2 NO- CLEAR NEXT BUFFER POSITION
® CURSOR HOME .

* THIS ROUTINE MOVES THE CURSOR TO THE BEGINNING OF THE .
* TOP LINE ON THE SCREEN.

* PARAMETERS ARE INPUTTED IN RT (5 BIT SCREEN LINE covu'nn)'
® AND ARE PASSED TO THE TMS9927 CURSOR POSITION REGISTERS. #
® CALLED BY THE MAIN ROUTINE ONLY.

HOMCUR MOV R7,R6 GET ABSOLUTE LINE POSITION
ANDI R6,>001F IS IT THE TOP LINE?
JEQ HMCY YES- JUMP
BL  PUPCURS NO- MOVE THE CURSOR UP
JMP  HOMCUR LOOP UNTIL AT TOP

HMC1  CLR @WCURCH ZERO CURSOR CHARACTER REGISTER
RTWP RETURN TO CALLING ROUTINE
END

Figure 3.2(a) Typical 99000 assembly language program;
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In this example the contents of R, and R, are added together and their sum
is put in R,. Therefore, R, is considered as the source operand and R, is the
destination operand.

Here is another example of an assembly language statement:

LOOP MOV RO,AR1  COPY RO INTOR1

0001 IDT 'EXAMPL'
0002 .
0003 * CLEAR SCREEN 4
0004 * THIS ROUTINE FILLS THE CHARACTER BUFFER WITH NULLS, AND *
0005 ® MOVES THE CURSOR TO HOME POSITION. I
0006 ® CALLED BY THE MAIN ROUTINE ONLY. 4
0007 * NO PARAMETERS ARE PASSED. »
0008 RN
0009 0000 RORG
0010 OPTION XREF
0011 REF  ENDSCR,WCURCH, UPCURS, BEGSCR
0012 0000 0208 CLRSCR LI  R8,BEGSCR POINTS TO START OF CHAR BUFFER
0002 0000
0013 0004 0209 LI  R9,ENDSCR POINTS TO END OF CHAR BUFFER
0006 0000
0014 0008 C187 MOV RT,R6 GET FLAG REGISTER
0015 000A 0246 ANDI R6,>0080 1S SCREEN PROTECTED?
000C 0080
0016 DOOE 1604 JNE CLR2 YES- CLEAR ONLY UNPROTECTED CHAR
0017 0010 O4F8 CLR3 CLR PR8+ CLEAR THE CHAR AND BUMP POINTER
0018 D012 8248 C  R8,R9 IS IT THE LAST BUFFER CHAR?
0019 0014 16FD JNE CLR3 NO- LOOP
0020 0016 1008 JMP  HOMCUR REPOSITION CURSOR TO "HOME"
0021 0018 C198 CLR2 MOV ¥RB,R6 GET THE CHARACTER
0022 0014 0246 ANDI R6,>8000 IS CHAR PROTECTED?
001C B00O
0023 DO1E 1601 JNE  CLRE YES- SKIP THE "CLEAR" STEP
0024 0020 04D8 CLR *RB CLEAR THE CHAR
0025 0022 05C8 CLR4  INCT RB BUMP BUFFER POINTER
0026 0024 8248 C  BRB8,RY IS IT THE LAST BUFFER CHAR?
0027 0026 16F8 JNE CLR2 NO- CLEAR NEXT BUFFER POSITION
0028
0029 ® CURSOR HOME .
0030 * THIS ROUTINE MOVES THE CURSOR TO THE BEGINNING OF THE *
0031 ® TOP LINE ON THE SCREEN. .
0032 * PARAMETERS ARE INPUTTED IN R7 (5 BIT SCREEN LINE COUNTER)®
0033 * AND ARE PASSED TO THE TMS9927 CURSOR POSITION REGISTERS. *
0034 ® CALLED BY THE MAIN ROUTINE ONLY. .
0035

0036 0028 C187 HOMCUR MOV R7,R6
0037 002A 0246 ANDI R6,>001F

GET ABSOLUTE LINE POSITION
IS IT THE TOP LINE?

002C 001F
0038 002E 1303 JEQ HMC1 YES- JUMP
0039 0030 0640 BL  @UPCURS NO- MOVE THE CURSOR UP
0032 0000
0040 0034 10F9 JMP  HOMCUR LOOP UNTIL AT TOP
0041 0036 O4E0 HMC1 CLR @WCURCH ZERO CURSOR CHARACTER REGISTER
0038 0000
0042 003A 0380 RTWP RETURN TO CALLING ROUTINE
0043

NO ERRORS, NO WARNINGS

Figure 3.2(b) assembled version of the program.

-
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This instruction statement starts with the word LOOP. It is an address identi-
fier for the instruction

MOV RO,R1

This type of identifier is called a label or tag. The instruction is followed by
“COPY RO INTO R1.” This part of the statement is called a comment. Thus
a general format for writing an assembly language statement is

LABEL INSTRUCTION COMMENT
Machine Language

Before a source program can be executed by the microprocessor, it must first
be run through a process known as assembling. This is normally done on a
minicomputer or microcomputer with a program called an assembler. The
result produced by this step is an equivalent program expressed in the
machine code that is executed by the microprocessor. That is, it is the equi-
valent of the source program but is now written in Os and 1s. This program is
also referred to as object code.

Figure 3.2(b) is a listing that includes the machine language program
for the assembly language program in Fig. 3.2(a). It was produced by a
99000 assembler. Reading from left to right, this list contains addresses of
memory locations, followed by the machine code instructions, the original
assembly language statements, and any comments. Note that for simplicity
the machine code instructions are expressed in hexadecimal notation, not as
binary numbers,

3.4 INSTRUCTION EXECUTION NOTATIONS

A standard notation is also used to describe the results produced by exe-
cuting a 99000 instruction. An example is

(SOURCE) ~ (DESTINATION)

which indicates that the source operand is placed in the destination operand.

Symbols are used to indicate which operands are to be processed, what
operation is to be performed on them, how the operands are to be accessed,
and the destination to which the result is transferred. The table in Fig. 3.3
lists the symbols that are used to describe assembly language instructions of
the 99000.



48 99000 Microprocessor Programming | Chap. 3

Symbol Meaning

8] Gontentsof .
(N Gontents of the memory location addressed the contents of .
Rn Workspace register n
Copy the information on the left of - into the right of -
i Exchange the information en the two sides of -
(28 At the memory location .
>. Hexadecimal .

Indirect addressing using .

Y & Indirect autoincrement addressing using .
©A(B) Direct indexed addressing using A and B
$ Current content of PC

LSbyte Least significant 8 bits of a word
MSbyte Most signiticant 8 bits of a word

Figure 3.3 Symbols and notations used to describe instructions.

Let us begin by taking an example that uses a few of these symbols.

MOV A1,R15
(R1) - (R15)

This is a register-toregister move instruction. The parentheses around
operands R, and R,s stand for “the contents of.” Therefore, it means that
the contents of register R, are copied into register Rs. At the end of the
operation, both registers contain the same value.

Another example that appears similar but produces a very different
result is

MOV +R1,R15
(#R1) - (R15)

This stands for “‘copy the contents of the memory location whose address is
stored in register R, into register R,s.” In this case, at the end of the opera-
tion, register R, still contains the address of the storage location that is to be
accessed, but the value that is stored at this address is now also held in
register R ;.

The move operation that we just described uses what is known as
indirect addressing. It is denoted by the symbol * included with the descrip-
tion of the source operand.

Up to now our examples have always involved the destination as a
workspace register. However, it can also be a storage location in general
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memory. For this to be the case, we change the destination side of the
expression by using the symbol @ before the description of the memory
location. Here is how we would change our last example to show that the
destination is the memory location called LOC instead of register R :

MOV +R1,@LOC
(*R1) - @LOC

Example 3.1

Show how to denote the operation that causes the value in memory location LOC
to be swapped with the value in workspace register Rs.

Solution:  To express this operation, we denote the source operand with @LOC,
the destination operand with Rs, and the exchange of data with <. This gives

@LOC «— (R5)

3.5 ADDRESSING MODES

The purpose of addressing is to specify the location of a source or destina-
tion operand. There are a number of different ways in which the address of
an operand can be generated by the 99000 microprocessor. These methods
are known as its addressing modes.

The eight addressing modes that are available on the 99000 are: imme-
diate addressing, direct addressing, workspace register addressing, workspace
register indirect addressing, workspace register indirect autoincrement ad-
dressing, indexed addressing, program counter relative addressing, and I/0
relative addressing. In this section we discuss each of these addressing modes
in detail and demonstrate their use.

Immediate Addressing Mode

Let us begin with the immediate addressing mode. It is the simplest of all the
addressing modes. In this case the value of the operand that is to be used in
the execution of the instruction is put in the memory location that follows
the instruction. That is, it immediately follows the opcode.

. An example of an instruction written with immediate addressing mode
is

LWP| >1234

This instruction loads workspace pointer register WP with the immediate
value 1234,,.
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In the instruction, the mnemonic LWPI is the opcode of the load work-
space pointer immediate instruction and >1234 is the va}ue of the source
operand. When coded in machine language, this instruction takes up t.wo
consecutive word addresses in memory. As shown in Fig. 3.4(a), the first
word contains the opcode for LWPI and is 02E0Q,s. The second word con-
tains the number that is to be loaded into WP. Here we find the immediate
operand 1234 4.

ma [oloJoJoToJoTi o1 T1T1]oJo]o]o]o]>02e0

ma+2[ofoJo[1JoJo1TooJo 1Tt 1]o]o]>12es

fal

Address Memory content Instruction
MA 02E0 LWPL  >1234
MA + 2 1234

MA +4 XXXX Next instruction

o ——
S —
S E—

(b}

Figure 3.4(a) Coding of the LWPI > 1234 instruction; (b) immediate
addressing-mode instruction before execution;

S

iy

kg

B R s
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Sec. 3.5 Addressing Modes 51

Address Memory content Instruction
MA 02E0 LwpPl  >1234
MA +2 1234

MA + 4 XXXX Next instruction

(c)

Figure 3.4(c) after execution.

The values in register WP before and after execution of the instruction
are shown in Fig. 3.4(b) and (c), respectively. Notice that prior to execution
of the instruction the value in WP is 0400,,. However, after execution, its
contents are 1234,4, which is the value of the immediate operand.

Direct Addressing Mode

Direct addressing differs from the immediate addressing we just described in
that the memory location following the instruction no longer contains the
value of the opcrand. Instead, it contains the address of the operand that is
to be processed during execution of the instruction.

Here is an example of an instruction that employs direct addressing for
both its source and destination operands.

MOV @>ABCD,@>1234
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In the instruction, MOV represents the operation, >ABCD is the address of Boidess WigimaFy cortant nstpucifon
the source operand, and >1234 is the address of the destination operand.
Therefore, it says to move the contents at address >ABCD to address
>1234.

Figure 3.5 illustrates the result of executing this instruction. Looking
at the before-execution memory state in Fig. 3.5(a), we see that the instruc-
tion word, which is coded as C820,, is located at an arbitrary address in
memory which is identified by MA. The next word address, MA + 2, con-
tains ABCD 4. This is the address of the source operand. It is followed at 99000
address MA + 4 by the destination operand address, 1234,¢. Notice that be-
fore the instruction is executed, the contents at the destination address are a

re
don’t-care state. On the other hand, the source address contains the data
word BEED 4. e[ ]
~
i
Address Memaory content Instruction § 8T :
MA €820 MOV © >ABCD, @ >1234 ]

MA +2 —— ABCD

: MA c820 MOV @ >ABCD, @ >1234
MA +2 ABCD
MA + 4 — 1234

MA +6 XXXX Next instruction

1234 L BEED

MA + 4 — 1234

MA +6 XXXX Next instruction

99000

pe ’
i asco | L, Beep
wl 1]
S E—
()

1234 L XXXX

- l:j Figure 3.5(b) after execution.

As the instruction is executed, the data at ABCD,, ar

: s 16 are moved to ad-
N dress 1234,,. Therefore, in the after-execution memory state of Fig. 3.5(b),
both addresses, ABCD,, and 12344, contain data word BEED,,. In this
way, we see that the move instruction specified with the direct addressing

mode copies the contents of one storage location in data i
another location. - SRS

ABCD Fesm BEED)

Workspace Register Direct Addressing Mode

The ‘workspace register direct addressing mode is similar to the direct ad-
;ires:?ng m;)d; except that this time a workspace register is specified for the
H ocation of the source or destination operand instead

Figure 8.5(a) Instruction using direct addressing before execution; location in data memory. For example, a MOV instructisrf e':;::i l?g?vr:iiie(r)lft:

(a)
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copy the contents of workspace register R, to workspace register Rs. The
instruction reads

MOV R1,RS

In this case, the actual memory addresses of the source and destination oper-
ands are derived from the value in the workspace pointer register and the
register numbers specified in the instructions.

An example is illustrated in Fig. 3.6. Here we find that WP equals
A120,,. Therefore, source register R, is located at address A122¢ and des-
tination register Ry at A12A,,. Before execution of the instruction, the con-
tents of the destination register are a don’t-care state and the contents of the
source register are data word ABCD,,. As shown in Fig. 3.6(b), executing
the instruction causes the value ABCD,4 to be copied into Rs.

Address Memory content Instruction
MA ci4 MOV R1,RE
MA + 2 XXXX Next instruction
‘99000
re
-
S~ ~—— a120 XXX RO
o —
A12A XXXX RS

{a)

Figure 3.6(a) Instruction using workspace register direct addressing
before execution;

| G
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Address Memory content Instruction
MA cia MOV R1,RS
MA - 2 XXXX Next instruction

ALU A120 XXXX RO
A122 ABCD R1
AT2A ABCD RS

(b)

Figure 3.6(b) after execution.
Workspace Register Indirect Addressing Mode

Worksp'ace 'register indirect addressing differs from workspace register direct
addressing in that the register specified in the instruction contains the ad-
dress of the operand instead of its value. This addressing mode is identified

in the instruction by including the symbol preceding the register symbol.
Here is an example:

MOV R1,:R3

In .this statement, source operand R, is expressed using the workspace
register direct addressing mode, but the destination operand R, uses the
workspace register indirect addressing mode. This instruction means that the
contents of R; should be moved to the memory location whose address is
held in R;.
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Figure 3.7 demonstrates the execution of this instruction. Notice that
the instruction is coded as C4C1 4 and is stored at address MA. If as shown
in Fig. 3.7(a), R, contains ABCD 4 and R; contains 91224, the result ob-
tained by executing the instruction is that the value ABCD4 from R, is
copied into the memory location at address 9122,5. This result is shown in
Fig. 3.7(b). Thus the destination in memory was specified indirectly by the
contents of Rj. This value must exist in R; prior to execution of the instruc-
tion. Moreover, note that it does not change due to the execution of the
instruction.

Workspace Regi Indirect Autoir Addressing Mode

This addressing mode is similar to the workspace indirect addressing mode
we just described. However, an autoincrementing feature has been added.
That is, after completing the operation specified by the instruction, the value

Address Memory content Instruction
MA cact MOV R1, "R3
MA + 2 XXXX Next instruction
99000
9124 XXXX
we 9126 XXXX
] —
o —
A120 XXXX RO
ALU
A122 ABCD Rl
A124 XXXX R2
A126 — 9122 R3
A28 XXXX R4

(a)

Figure 3.7(a) Instruction using workspace register indirect addressing
before execution;
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Address Memory content Instruction
MA c4ci MOV R1, "R3
MA + 2 XXXX Next instruction
99000
PC MA + 2 9122 - ABCD
9124 [ xxxx
P
bl H120 9126 XXXX
o —
] —
A120 XXXX
ALU o
A122 ABCD R1
Al124 XXXX R2
A126 9122 R3
A128 XXXX R4

(b}

Figure 3.7(b) after execution.

of the indirect address in the workspace register is incremented automati-
cally. The increment is by 2 for instructions that process words of data and
by 1 for those that process bytes of data. In this way, it points to the next
word or byte storage location in memory.

Hete is an example of a MOV instruction in which the destination oper-
and is specified with the workspace register indirect autoincrement ad-
dressing mode:

MOV R1,+R3+

Notice that this time the destination register symbol is still preceded by *

but that a + also follows the symbol. It is the “+* that signifies the auto-
increment mode.
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The diagram in Fig. 3.8 shows the effect of executing this instruction.
Notice that the example is the same as that given for workspace indirect
addressing in Fig. 3.7. In Fig. 3.8 we find that the contents of R,, which are
ABCD4, are copied into the memory location at address 9122,¢. However,
there is a difference in the result. This time the original indirect address in
Rj, which was 91224, has been incremented to 9124 .

Indexed Addressing Mode

The indexed addressing mode is significantly different from those we have
considered up to this point. In this case, a workspace register and base ad-
dress are specified in the instruction to identify the location of the operand.

Sec.35 Addressing Modes

Address Memory content Instruction
MA cco1 MOV R1, *R3 +
MA +2 XXXX Next instruction
99000
9124 [ XXXX
P
v 9126 XXXX
o —
o —
A120 XXXX RO
ALU
A122 ABCD R1
Al24 XXXX R2
A126 — 9124 R3
A128 XXXX R4

Address Memory content Inst Lection
MA CCD1 MOV R7, 'R3 ¢
MA + 2 XXXX Nex!t instruction
99000
9124 XXX
w sas [ | ook
T
s ]
] —
T
A120 XXX K RO
A Al122 ABCD R1
A124 XXXX R2
A126 — 8122 R3
A128 XXXX R4

(a)

Figure 3.8(a) Instruction using workspace register indirect autoincre-
ment addressing before execution;

(b)

Figure 3_8(b) after execution.

The workspa_ce register must already contain a value called the index. This
index \(Jialue is added to the base address to determine the address of the
operand.

As an example, let us take the statement

MOV R1,@>1234(R5)

Here the workspace register in the destination operand is enclosed in paren-
theses. This indicates that it holds an index value. The base address is ex-
pressed directly as 12344,

) Figure 3.9 illustrates the execution of this instruction. Notice that the
u}struction, which is located at address MA, is coded as €941 ;4. This instruc-
tion word is followed by the base address 12345 at MA + 2, Moreover, we
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find that the data to be moved are represented by BEEE, ¢ in register R, and
the index in R is 0814 .

The instruction calls for moving the contents of R, to the storage loca-
tion whose address equals the sum of the base address 1234,¢ and the index
0814,4. Therefore, the effective address of the destination is

EA = 1234, + 0814, = 1A48,¢

As shown in Fig. 3.9(a), the contents of this location are initially 2 don’t-
care state. But after execution of the instruction, the data word BEEE ¢ has
been copied into the address as shown in Fig. 3.9(b).

It should be noted that workspace register R, is not to be used for
storing index values. This is a restriction that should be kept in mind when-
ever indexed addressing is being used. If R, is accidentally specified as the

Address Memory content Instruction
MA 941 MOV R1, @ >1234(R5)
MA + 2 1234 —
MA + 4 XXXX Next instruction
99000
o e [
w
S —
e ] w100 o o
A102 BEEE R1
ALs A104 KXXX R2
A106 XXXX R3
A108 XXXX R4
A10A 0814 — 5
Al0C XXXX R6

(a)

Figure 3.9(a) Instruction using indexed addressing before execution;
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Address Memory content Instruction
MA coq1 MOV R1, @ >1234(R5)
MA +2 1234 —1
MA +4 XXXX _I Next instruction

= |

BEEE =— +

S —
A100 XXXX RO

A102 BEEE R1
ALU

A104 XXX X R2

A106 XXXX R3

A108 XXXX R4

A10A 0814 — RS

A10C XXXX R6

(b}

Figure 3.9(b) after execution.

?ndex register, the index value is automatically assumed to be 00004, even
if Ry contains a nonzero value.

Program Counter Relative Addressing Mode

Program counter relative addressing mode is not used to identify the location
of an operand. Instead, it is used to specify a displacement relative to the
present contents of the program counter. In this way, it can be used to pass
cqntrol to another place in the program. This addressing mode is used only
with jump instructions.

, Typically, a jump instruction contains an 8-bit signed number called the
dxsp{acement. It is this value that indicates how far forward ( +) or backward
(=) in the program the point is to which control is to be passed. The new ad-
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dress is computed automatically by adding 2 times the displacement to the

updated contents of program counter PC. ) ' )
An example of an instruction that uses this addressing mode is

JMP $+48

In this expression, $ indicates the current value in I"C and +8 .is'tbe signed
displacement. Execution of the instruction causes a jump to be initiated to a
point that is four word addresses forward from the address of the current
instruction. ) .

For instance, Fig. 3.10(a) shows our example jump mgtmctlon coded as
1003,¢ and stored at address AB10,¢. As it executes, PC is already updated

Address Memory content Inst ruction

S
w ]

AB10 1003 JMP $+8
o E—

AB14 XXX

AB1B XXX instruction

AB12 KXKX Next instruction

(a)

Figure 3.10(a) Instruction using program counter relative addressing
before execution;
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Address Memory content Instruction

99000

.
o .
AB10 1003 JMP $+8
sT I: AB12 XXXX Instruction
AB14 XXXX 2
_
AB16 AXXX

AB18 XXXX Next Instruction

{h)

Figure 3.10(b) after execution,

to AB12,. The 99000 calculates the new address as AB12,, + 2 X 0003,¢.
This gives AB18,,. Thus, as shown in Fig. 3.10(b), the next instruction is
fetched from this displaced location.

In a similar way, the instruction

JMP $-8

specifies jumping back four memory word locations from that of the jump
instruction.

The format of the JMP instruction provides 8 bits for specification of
the displacement. With 8 bits, the range of jump permitted through program
counter relative addressing is limited to +128 words or —127 words with
respect to the current value in PC.
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1/0 Relative Addressing Mode

I/O relative addressing is the addressing mode that is used by the input/
output instructions of the 99000. It relates to the 1/O address space, not the
memory address space. We will not introduce this addressing mode at this
time. Instead, it will be considered in detail when the 1/O instructions are

introduced in Chapter 6.

3.6 INSTRUCTION SET

In Sections 3.1 through 3.5 we introduced the software model of the 99000,
assembly language and machine language programming, and addressing
modes. With this background, we are ready to begin our study of the instruc-
tion set of the 99000.

The 99105A microprocessor, which is the first processor available in
the 99000 family, has a very powerful minicomputerlike instruction set that
includes 84 instructions. It is known as the baseline instruction set of the
99000. This baseline instruction set can be expanded in macrostore memory.
Based on their functionality, the instructions in the baseline instruction set
can be categorized into groups. In this chapter we consider the instructions
from four groups: the data transfer instructions, arithmetic instructions,
logic instructions, and shift instructions.

3.7 DATA-TRANSFER INSTRUCTIONS

The instructions in the data-transfer group allow the programmer to initialize
the values in registers or memory of the 99000 microcomputer system
through software. The data-transfer group includes instructions that allow
the internal WP and ST registers to be loaded with new values or to have
their old values saved in memory. Moreover, there are instructions that per-
mit data to be transferred between workspace registers and general memory.

For ease of understanding, we will subdivide the data-transfer group of
instructions into three subgroups. The first group that we will look at con-
sists of instructions known as the immediate mode instructions. This is be-
cause their source operand is always specified as an immediate operand and
is accessed using the immediate addressing mode. That is, it is coded follow-
ing the instruction’s opcode in program memory.

There are three instructions in this category: load immediate (LI),
load interrupt mask immediate (LIMI), and load workspace pointer imme-
diate (LWPI). The meaning, format, function, whether result is compared to
zero, and effect on status bits for each of these instructions are summarized
in Fig. 3.11(a).
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Let us first consider the “load works, i i i i
. pace pointer immediate” instruc-
tion. The general format of this instruction is given in Fig. 3.11(a) as

LWPI |

Here I identifies the immediate operand.

. Result compared
Instruction Meaning Format Explanation to zero Status bits affected
Ll Load immediate LIRI 1-i(R} Y L> A> EQ
LImI Load interrupt LIMI = 7
i i I I-(ST,,-ST,,) N 8T,,-8Ty,
LWPIL Load workspace LWPI I 1-
pointer immed ate el N None
(a)
Address Memory content Instruction
MA 02ED LWPI >2000
MA 1 2 2000
MA 4 4 XXXX Next instrurtion
99000
=
T N
1FEO XXXX RO

ST

ALU 1FFE XXXX RIS
2000 XXXX RO
2002 XXXX R1
201E XXKX R15

(b)

Figure 3.11(a) Immediate-mode i ions; i i
i 3 le instructions; (b) LWPI instruction be-
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Address Memory content Instruction
MA 02E0 LWPI >2000
MA +2 2000
MA + 4 XXXX Next instruction
99000

.

"
1FEQ XXXX RO

] —
1FFE XXXX R15

ALK 2000 XXXX RO

2002 XXXX R1
201E XXKX R15

(c}

Figure 3.11(e) after execution.

The general description of this instruction’s operation says that upon
execution the immediate operand is loaded into the workspace Pomter
register within the 99000. Moreover, notice that execution o.f the instruc-
tion does not compare the result to zero or affect the status register.

An example of the instruction is

LWPI >2000

When coded, this instruction takes up two memory locations: the first fqr
the instruction word and a second for the immediate operand. Thus it is
called a two-word instruction. As shown in Fig. 3.11(b), the first word,
which in machine code is 02E0,,, is located at an arbitrary address in pro-
gram memory called MA. It is followed at MA + 2 by the immediate oper-
and, which in our example is 2000,,. This is the new workspace pointer
address.
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The result of executing the instruction is illustrated in Fig. 3.11(c).
Here we see that the old value of WP, which was 1FDO,g, is replaced by the
value 2000,4. In this way, a new workspace has been defined in memory. It
starts with register R, at address 2000, and continues up through R at
address 201E 4. The value of the old workspace pointer is lost.

The other two instructions, LI and LIMI, are used to load workspace
registers and the interrupt mask ST,, through ST, respectively. It is im-
portant to note that the LI instruction can be used to initialize a workspace
register, but cannot be used to load data into general memory.

Example 3.2
What is the result of executing the following instructions?

L R3,>0200
LIMI 6

Solution:  Execution of the load immediate instruction causes register R of the
current workspace to be loaded with the value 0200,,.

(R3) = 02004
When the “load interrupt mask immediate” instruction is executed, the value
0110, is loaded into the interrupt mask part of the status register. This gives

(ST 38T 38T 148T;5) = 0110,

The second kind of data-transfer instruction we will consider are those
that move data from one memory location to another. These instructions
can process either 16-bit words or 8-bit bytes of data. As shown in Fig. 3.12,
there are three such instructions: move word (MOV), move byte (MOVB),
and swap bytes (SWPB).

The move words (MOV) instruction is a good example to demonstrate
how these instructions work. Notice that its general description is

MOV S§,D

Here S and D represent the source and destination operands, respectively.

‘ Result compared

Instruction Meaning Format Explanation 10 zero Status bits affected
MoV Move words MOV S,D 18) = (D) Y L> A> EQ
McvB Move bytes MOVB S,Dj (Sbyte) -~ (Dbyte) ¥ L>, A> EQ OP
SwpB Swap bytes SWPB S (Sg-5;) = (84-5,5) N None

Figure 3.12 “Move” data-transfer instruction.
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An example of the instruction using direct workspace addressing mode
is

MOV R3,R5

Looking at Fig. 3.12, we see that its operation can be represented by
(R3) » (R5)
For instance, let us assume that R, initially contains ABCD, and that

the contents of R are a don’t-care state.

(R3) = ABCDy,

(R5) = XXXX 5
The result after executing the instruction is that the value ABCD 4 is moved
to Rs.

ABCD;4 > (R5)
Thus both R3 and Rs now contain the same value.

(R3) = ABCDy,

(R5) = ABCD,¢

In Fig. 3.12, we see that the function performed by move bytes
(MOVB) is similar to that just described for MOV. However, it transfers
bytes of data instead of words. For instance, the instruction

MOVEB @>1056,@> 1055

moves the contents of the most significant byte at word memory address
1056, to the least significant byte location at word address 1054 4.

The last instruction, swap bytes (SWPB), is somewhat different. Note
that it works on the same register or memory word and causes the most
significant byte to be swapped with the least significant byte.

Example 3.3
Describe what happens when the following sequence of instructions is executed.

L1 R2,>3AB5S
MOV R2,R4

MOV @>ABCD,R3
SWPB R2

Assume that memory address ABCD, initially contains FF00,s.
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Solution:  As the “load immediate” instruction is executed, its immediate value is
loaded into R,. This gives .

3AB5,s > (R2)

Execution of the first move instruction copies the value just loaded into R,
into register R4, We get

3AB5; ~ (R4)

The effect of executing the second move instruction is that the value at ad-
dress ABCD;4 in memory is moved to register R;. We assumed that this memory
location was initialized to FF00,s. Therefore, the results are

FF00,6 > (R3)

The last instruction swaps the least significant byte of R; (B5;¢) with its most
significant byte (3A 4). The result in the register is

B53A > (R2)

The last group of data-transfer instructions are shown in Fig. 3.13. Here
we see that it includes the store status register instruction (STST), store
workspace pointer instruction (STWP), load status register instruction
(LST), and load workspace pointer instruction (LWP), The purpose of these
instructions is to permit the contents of ST and WP to be saved in or loaded
from a workspace register.

Result compared
Instruction Meaning Format Explanation to zero Status bits affected

STST Store status STSTR (ST) ~ (R} N None

STwWP Store workspace STWP R (WP] —~ (R} N None
pointer register

LST Load status LSTR {R) ~ (ST} N None
register

Lwp Load workspace LWP R (R) - (WP) N None
painter register

Figure 3.13 “Store and load" data-transfer instructions.

Notice in Fig. 3.13 the general format of the “store workspace pointer’’
instruction. It can be implemented for a specific register as

STWP R5

Executing this instruction causes the contents of WP to be copied into R of
the current workspace. For example, if WP contains 1234 4, the result after
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executing the instruction is that Ry contains 1234,¢. Of course, this value
also remains in WP. That is,

(WP) = (R5) = 12344
Example 3.4

If we assume that ST and WP initially contain 1000,5 and ABCO ¢, respectively,
what is the result of executing the following sequence of instructions?

STST R1

STWP R3

MOV R1,R2
MOV R3,R4

L R1,>0000
Li R3,>ABEO
LwP  R3

LST R1

Solution:  Execution of the first two instructions causes the current values in ST
and WP to be saved in workspace registers R, and R, respectively.

1000, > (R1)
ABCO,¢ ~ (R3)
The next two instructions move these values to R, and Ry, respectively.
(R1)~> (R2) = 1000,
(R3) - (R4) = ABCOy¢

They are followed by two “load immediate” instructions that when executed
load new values into R; and Rs. These values are included in the instructions as
immediate operands. The results are

0000, + (R1)
ABEO, - (R3)

Finally, the workspace pointer and status registers are loaded from workspace
registers R3 and R, respectively, with LWP and LST instructions. They become

(R3) > (WP) = ABEO,,
(R1) = (ST) = 00004

Notice that we have saved the old ST and old WP in workspace registers and
then cleared ST and loaded a new value into the workspace pointer.

3.8 ARITHMETIC INSTRUCTIONS

The 99000 microprocessor also has an extensive group of arithmetic instruc-
tions. This group includes instructions for the basic arithmetic functions,
such as addition, subtraction, multiplication, and division, as well as special
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functions, such as increment, decrement, negate, and absolute value. With
these instructions, the programmer can implement more complicated mathe-
matical functions such as floating-point addition and subtraction.

Here again, for study purposes, we will subdivide the larger group of
arithmetic instructions into smaller groups. Let us start with the addition
and subtraction instructions. They are shown in Fig. 3.14. Notice that the
mnemonic, name, format, function, and status affected are provided for each
instruction in this table.

Result compared
Instruction Meaning Format Explanation to zero Status bits atfected
A Add words ASD () + (D) - (D) ¥ L> A> EQ,C, AF
AB Add bytes AB S,D (Sbyte) + (Dbyte) ~ (Dbyte) ¥ L> A>, EQ,C, AF,OP
Al Add immediate Al RI (R) +1—~(R) N L> A>, EQ,C,AF
s Subtract words $S.D (D) - (S) = (D) ¥ L> A> EQ,C, AF
SB Subtract bytes S8 5D (Dbyte) — (Sbyte) -+ (Dbyte) Y L>, A>, EQ,C, AF, OP

Figure 3.14 Addition and subtraction instructions.

Let us take a detailed look at the add words (A) instruction. Its general
format is

A S,D

where the source and destination operands can be specified with many of the
earlier studied addressing modes. If we use direct workspace addressing
mode, a typical example is

A R1,R3

The functional description of the add instruction in Fig. 3.14 shows
that it adds the value of the source operand to the value of the destination
operand and then puts the sum that results in the destination location. For
our example, the 99000 would read the contents of both R, and R; out of
memory, add them in its ALU, and then write the result back out into Rj.
This operation is described as

(R1) + (R3) > (R3)

If we assume that R, contains 1234, and R contains ABCD,, the result is
found to be

12345 + ABCD ¢ - (R3) = BEO1,4
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Figure 3.14 also indicates that status bits are affected whenever an addi-
tion or subtraction instruction is executed. Notice that for the “add words”
instruction the result that occurs is compared to zero. Based on this compari-
son, the logical greater than (L>>), arithmetic greater than (A>>), and equal
(EQ) status bits are affected. Moreover, if a carry out occurs from the MSB
during this addition, the carry (C) bit is set and if an overflow error occurs,
the arithmetic fault (AF) bit is set.

The other two addition instructions identified in Fig. 3.14 are similar.
In the case of the add bytes (AB) instruction, a source byte is added to a
destination byte and the result is put into the location of the destination
byte. On the other hand, the “add immediate’ instruction is used to add the
value in a workspace register to an immediate operand. The result is put back
into the specified workspace register.

The two subtraction instructions subtract words (S) and subtract bytes
(8B) are similar to their corresponding addition instructions. But in this case,
the source operand is subtracted from the destination operand and their
difference is returned to the location of the destination operand.

Example 3.5

Describe the results found in registers R, and Rs, memory location LOC, and the
carry status bit after execution of each instruction in the sequence that follows.

LI R2,>0000
LI RS,>0000
LI @Loc,>1111
Al R2,>A234
Al RS5,>1BCD
A R2,@8LOC
AB R2,R5

S R2,@L0C
SB @LOC,R2

Assume that R,, Rs, LOC, and C are initially don’t-care states.

Solution: Executing the first “load immediate” instruction clears R, to zero as
shown in Fig. 3.15. Executing the second LI instruction does the same for Rs.
However, the third instruction initializes the contents of LOC to 1111 ¢. The carry
bit is not affected by these three operations. This completes initialization of the
registers and memory.

The first “add immediate” instruction causes the value A234,, to be added to
the contents of R,. Since R, contained zero, the result as shown in Fig. 3.15 is that
the contents of R, becomes equal to A234,,. No carry occurs; therefore, C is
cleared to 0. The same happens as the second Al instruction is executed, but this
time the result in Rs is 1BCD .

Next, an ‘“‘add word” instruction is executed. It causes the contents of R,,

- S R bt e o T —
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Instruction (R2) (RS) (Locl c)
Xxxx [ x| xxxx | x
LI A2, >0000 0000 | xooxx | xxxx | x
LI RS, -0000 0000 | 0000 | xxxx | x
LI wioc > 1111 | 0000 | 0000 | 1111 X
Al R2, -A234 A234 | 0000 | 1111 0
Al RS, - 1BCD A234 | 1BCD | 1111 0
A R2,@LOC a23a | 18cp | B34s 0
AB R2,R5 A234 | BDCD | B345 0
S R2,WLOC A234 | BDCD | 111 0
S8 @LOC, R2 9134 | 8pco | 1111 0 Figure 3.15 Example using add
and subtract instructions.

which are A234,, to be added to the contents of memory location LOC. LOC was
initialized to 1111,4; therefore, the result stored in LOC is

1111,5 + A234,5 = B345,
Again, no carry is produced and C equals 0.

This word addition is followed by an “add byte” instruction. Execution of
this instruction adds the most significant byte of R, to the most significant byte
of Rs. That is,

A2+ 1B = BDyg

In this way, we get BDCD,; in Rs. C stays at 0.
Now the value in R,, which is still A234,4, is subtracted from the contents
of LOC, B345 4. Their difference is

B345,s — A234,, = 11114
This result is stored in LOC, thereby restoring it to its initial value. No borrow is
required; therefore, C is cleared to 0.

) Finally, a “byte subtract™ instruction is executed. This causes the most sig-
nificant byte of LOC, which is 11,4, to be subtracted from the most significant
byte of R,, which is A2,

A2 — 1116 = 9146
This produces the result 9134 ¢ in R; and C stays at 0.

The 99000 microprocessor also provides instructions for 32-bit addition
and subtraction. These are its double-precision arithmetic instructions. Their
functions are summarized in Fig. 3.16.

The mnemonic for the double-precision addition instruction is AM and
its general format is

AM §,D
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Result compared >1112 (Ry). The 32-bit sum that results is placed at the destination addresses. This
Instruction Meaning Format Explanation to zero Status bits affected result is found to be “
AM | Add double AMSD [(5.5+2)4(D,D421~(D,C « 2) y A> L>EQC 1111101046 + 12345678, = 23456688,
M Subtract double | SMS,D [(0,D+21-(5,5+2)~D,D+2) ¥ A> L>EQ.C It is organized in memory as
(@>1110) = 23454
Figure 3.16 Double-precisi ddition and subtraction instructions. and
. (@>1112) = 6688,
i bincRonal descdption of AM i The SM instruction employs a different addressing mode, indirect workspace
(8,5+2) + (D,D+2) » (D,D+2) ddressing, for its destination operand. However, R, was initialized such that the
. . . > same memory locations are involved as were for the addition operation. This is be-
Here the operands are 32 bits long (long words); therefore, they exist at two . cause R4 contains destination address >1110. The contents of source registers R,
consecutive word addresses in memory. For this reason, the source operanzd : and R, are subtracted from the new value in >1110 and >1112. This gives
is identified as residing in S and S+2 and destination operand in D and D+2.
' P 23456688,5 — 123456785 = 11111010,¢
Example 3.6

which is organized in memory as

(>@1110) = 111144

Describe the result of executing the instruction sequence that follows:

LWPI  >1100 and
u R1,>1234 i =
O A2 58878 (>@1112) = 1010,
Ll @>1108,>1110 This restores the contents of the registers to their original values.
Li @>1110,>1111 i L. X i .
U @>1112,>1010 Another subgroup of the arithmetic instructions is shown in Fig. 3.17.
AM  R1,@>1110 These are the increment and decrement instructions. Here we find two dif-
sM R1,+R4 ferent increment instructions, INC and INCT, and two decrement instruc-
tions, DEC and DECT. Notice from their functional descriptions that the
Solution:  The first instruction loads the workspace pointer register within the INC and DEC instructions are used to increment or decrement the specified
99000. Its value becomes source operand by 1, respectively. On the other hand, INCT and DECT
(WP) = 1100, increment or decrement their operand by 2 instead of 1.
This establishes a 16-register workspace starting with R, at address 1100 15 and end- T
ing with R,s at 111E. Instruction Meaning Format Explanation to zero Status bits affected
The five “load immediate” instructions that follow initialize the contents of
registers within the workspace. The results of these operations are as follows: INC Increment INC S S 11 (S Y L> A> EQ,C, AF
(R1) = 1234, INCT Increment by two | INCT § ()42 -1(8) ¥ L> A> EQ,C AF
(RZ) - 567816 DEC Decreinent DEC S (S) 1 -(S) ¥ L™ A > EQ,C, AF
(R4) = (>1108) = 1110, DECT [ Decrement by two | DECT S (S)-2 -(s) Y L> A > EQ C, AF

(R8) = (>1110) = 11114
(R9) = (>1112) = 1010,

The AM instruction causes the long-word source operand in registers R, and
R; to be added to the long-word destination operand at addresses >1110 (Rg) and INCT @LOoC

Figure 3.17 Increment and decrement instructions.

Consider the instruction
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It stands for increment the contents of memory location LOC by 2. As-
suming that address LOC contains 1234,,, execution of the instruction
yields
(@LOC) + 2 » (@LOC)
which gives
(@LOC) = 1234,4 + 0002,, = 1236,
Example 3.7
What is the result of executing the following sequence of instructions?
INC  R3
INCT @>128C

DEC @>12BC
DECT R3

Assume that the original contents of R3 are AB12,¢ and that of address >12BC are
1111,6.

Solution:  Executing the first instruction causes the contents of R; to be incre-
mented by 1. This gives

(R3) = AB13,,

The second instruction causes the value in the memory location at address
>12BC to be incremented by 2. Therefore, we get

(>12BC) = 1113,

The first decrement instruction also affects memory location >12BC. It de-
creases its value by 1 to give

(>12BC) = 1112,

Finally, the last instruction causes the value in Rj to be decremented by 2.
The result is

(R3) = AB11,,

Two other instructions in the arithmetic group are the negate and
absolute value instructions. As indicated in Fig. 3.18, the format of the
negate instruction is

NEG §

Execution of this instruction replaces the source operand with its 2’s com-
plement. That is, all of its Os are converted to 1s, all of its 1s are converted
to 0s, and then 1 is added.

On the other hand, the ABS instruction is shown to cause the absolute
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Result compared N .
Instruetion Meaning Format Explanation 10 zero Status bits affected
Negate NEG § 2s complement of (S) — (S) ¥ L> A> EQ.C, AF
Absolute value ABS S [8) | = 1(8) N None

Figure 3.18 Negate and absolute value instructions.

value of the source operand to be returned to the source location. Here is an
example of the absolute value instruction:

ABS R3

This means to replace the contents of R; by its absolute value. For instance,
if

(R3) = 1234, = 0001001000110100,
Since the MSB, which is the sign bit, is logic 0, it represents a positive num-
ber. The absolute value is the same binary number. For this reason, the same
value is returned to R ;.

As another example, let us assume that the value in R, is changed to
A000,4. In binary form this is 1010000000000000,. In this case, the sign bit
is 1 to identify a negative number. Execution of the ABS R3 instruction
causes the number in R; to be replaced by its absolute value. This gives

(R3) = 0010000000000000, = 2000,

Example 3.8

If R, contains 3579, and the storage location at address ABCD 4 contains 1234 4,
what is the result of executing the following sequence of instructions?

NEG R1
ABS @>ABCD
ABS R1

Solution: ~ When the first instruction is executed, the contents of R, are replaced
by their 2’s complement. The original register contents are

(R1) = 3579, = 0011010101111001,
Inverting its bits, we get
3579, = 1100101010000110, = CA86 5
Adding 1,4 for the 2’s complement results in
(R1) = CAB865 + 1,6 = CABT,4
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The second instruction replaces the contents of address ABCD 16 With its absolute
value, The original number 1234 is a positive number; therefore, the result after
the instruction is the same number.

(>ABCD) = 12344

The third instruction takes the absolute value of the contents of R;. It now
contains CAB7,¢, which is a negative signed number. This number is replaced by

(R1) = 3579,

The last set of instructions in the arithmetic group are those for multi-
plication and division. As shown in Fig. 3.19, there are four of these instruc-
tions. They are unsigned muitiply (MPY), unsigned divide (DIV), signed
multiply (MPYS), and signed divide (DIVS).

R e Instruction

Result compared

MPY

DV

MPYS

DIVS

Meaning Format Explanation to zero Status bits affected
Unsigned multiply [ MPY § R Most significant word of N None
(S) + (R} — (R}

Least significant word of
{8h+ (R} = (R 1 1)

Unsigned divide DIV S,R (R, R+ 1]/(S) N AF
Quotient — (R)
Remainder = (R + 1)

Signed multiply MPYS S Most significant word of Y L>,A>, EQ
signed product

(S) * (RO) — (RO)
Least significant word of
signed product

(S) * {RO) -~ (R 1)}

Signed divide DIVS § (RO, R1)/(S) 4
Quotient — (RO)
Remainder ~ (R 1)

L>, A > EQ AF

Figure 8.19 Multiplication and division instructions.

In the case of unsigned muitiply (MPY), the contents of source operand
S and destination workspace register R are treated as unsigned numbers.
Notice that the destination must always be a workspace register. The 32-bit
product that results from the multiplication is always placed in destination
workspace register R and the next consecutive register R+1.

For the signed divide instruction (DIVS), the MSB of the source
operand and destination operand are considered as sign bits. The source
operand is the 16-bit divisor and it can be located anywhere in memory. On
the other hand, the dividend, which is 32 bits, must be held in workspace
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registers R, and R,. The quotient that results is produced in R, with the
remainder in R. ‘
Example 3.9

What is the result produced by the following sequence of instructions?

MPY @NUM1,R2
DIV  @NUM2,R2

Assume that the original contents of R;, NUM1, and NUM2 are C111,¢, 0003,4,
and 0004 4, respectively.
Solution:  Executing the first instruction results in the word stored at address
NUM1 being multiplied by the word in R,. The unsigned result that is produced in
R, and R; is
(@NUM1) X (R2) = 00034 X C111,, = 00024333 ¢
(R2) = 0002,
(R3) = 4333

The division instruction causes the 32-bit product in R, and R; to be divided
by 0004 4, which is at address NUM 2. This yields

R2,R3/NUM2 = 00024333,,/0004 ¢
(R2) = 90CC¢
(R3) = 0003,

Example 3.10
Write a program to compute the value of E using the following equation:

E=|AB—C/D|

Assume that A, B, and D are B-bit signed numbers whose values are to be assigned
as immediate operands. On the other hand, C is a 32-bit signed number already held
in R, and Rg. Also assume that the workspace pointer has already been loaded with
0400,,.

Solution:  Let us start by putting A and B into registers R, and R, respectively.
At this time, for convenience, we will also load D into R4. This can be done with
the following “load immediate” instructions:

LI R2,A

LI R3B
LI R4,D

Now we will multiply A and B. To use the MPYS instruction, one operand
must be in Rq. Let us move A from R, to Ry. This is done with

MOV R2,RD
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Now the multiplication is performed by the instruction
MPYS R3
Let us save just the least significant word of the result in Rs.
MOV R1,R5

To implement the signed division of C by D, we must move the value of C
from R, and Rg to R and R, respectively. Two move instructions are required.

MQav R7,RO
MOV R8,R1

Now we can divide.
DIVS R4
Dropping the remainder, we will just move Ry to Rg.
. MOV RO,R6

Finally, we can subtract C/D in R¢ from AB in Rs and then take the absolute
value. This is done with the instructions

) RB,R5
ABS RS

The final result, E, resides in Rs. The complete program is shown in Fig. 3.20.

LI R2,A

LI R3.B

LI R4,0

MOV R2, RO

MPYS R3

MOV R1, RS

MOV R7, RO

MOV R8, R1

DIVS R4

Mov RO, R6

s R6,R5  Figure 3.20 Program for evaluat-
ABS RS ing the equation F = |[AB— C/D|.
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3.9 LOGIC INSTRUCTIONS

The logic instructions of the 39000’s instruction set allow logic operations to
be performed in software. The logic instructions can be divided into three
groups. The first group provides the basic Boolean logic functions, such as
AND, OR, and NOT. The second type are those instructions that can be used
to clear or set all of the bits in a register or memory location. The last type
permits a programmer to clear or set individual bits of a word or byte in a
register or memory location.

Let us begin by looking more closely at the first type, the basic logic
instructions. These four instructions, AND immediate (ANDI), OR imme-
diate (ORI), exclusive-OR (XOR), and invert (INV), are described in Fig.
3.21. All of these instructions always perform their operations on a word of
data.

Result compared
Instruction Meaning Format Explanation 0 zero Status bits affected
ANDI AND immediate ANDI R,I {R) AND I~ (R) ¥ L> A> EQ
ORI OR immediate ORI R,I (R)OR 1~ (R) Y L> A> EQ
XOR Exclusive-OR XOR S,R {S) XOR {R] =~ (R} ¥ L> A> EQ
INV Invert INV § S) - (8 Y L> A> EQ

Figure 3.21 Logic instructions.

In the case of the ANDI and ORI instructions, we see in Fig. 3.21 that
the bits in the specified workspace register are logically ANDed or ORed,
respectively, with their corresponding bits in the immediate operand. This
immediate operand is frequently referred to as the mask. The result pro-
duced by ANDing or ORing the data word with the mask is put in the
assigned workspace register.

The result of an AND operation tells which bits are logic 1 in both the
mask and workspace register. On the other hand, the result of an OR opera-
tion identifies which bits are logic 0 in both the mask and workspace
register.

The XOR instruction causes the contents of the source operand to be
exclusive-ORed with the value in the specified workspace register. The result
is returned to the workspace register. It identifies which bits are of oppasite
logic levels in the source operand and workspace register.

The INV instruction simply inverts the logic level of each bit in the
source operand.
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Example 3.11
Describe what happens to the contents of R, and R; as the following instructions
are executed.
Ll R2,>ABCD

ANDI R2,>F017
ORI R2,>100A

] R3,>AEB9
XOR R2,R3
INV  R3

Solution:  As these instructions are executed, the contents of R, and R, are af-
fected as shown in Fig. 3.22. The first instruction causes the value ABCDy, to be
loaded into R,. Then this value is ANDed with the immediate operand F017 4.
Therefore, we get

(R2) = ABCD;s =1010101111001101,
F017,¢ = 1111000000010111,
NEW (R2) = ABCD4 - F017,4
=1010101111001101; + 1111000000010111,
= 1010000000000101,
= AD05,
Next, the new contents of R, are ORed with 100A 4. This gives
100A ¢ = 0001000000001010,
NEW (R2) = A005,5 + 1004
=1010000000000101, + 0001000000001010,
=1011000000001111,
= BOOF,4

Now the value AEB9 ¢ is loaded into R and then its value is exclusive-ORed
with BOOF ;4. The results are

(R3) = AEB9;¢ = 1010111010111001,

NEW (R3) = (R2)D(R3)
=1011000000001111,(1)1010111010111001,
=10001111010110110,
= 1EB6,,

The last instruction inverts each of the bits in R;.

NEW (R3) = (R3) = 1110000101001001,

=E149;
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Instruction (R2) (R3)

LI R2,> ABCD | ABCD XXXX
ANDI R2,>F017 AD05 HXXX
ORI R2, > 100A BOOF XXXX
LI R3,> AEBY BOOF AEBY
XOR R2,R3 BOOF 1EB6

INV  R3 BOOF E149 Figure 3.22 Example using logic

instructions.

The next two instructions in the logic group are clear (CLR) and set to
ones (SETO). These instructions are handy when the value of a register or
memory location is to be cleared to zero or loaded with all 1s. Notice in Fig.
3.23 that CLR causes the value 00004 to be loaded into the source location
and that SETO causes FFFF,4 to be loaded.

Result compared
Instruction Meaning Format Explanation to zero Status bits affected
CLR Clear CLR S > 0000 — (S) N None
SETO Set to ones SETD S > FFFF = (S) N None

Figure 3.23 ‘“Clear’’ and “‘set to ones” instructions.

The last group of logic instructions are those that manipulate bits in
either a register or memory location. The first two of these instructions, as
shown in Fig. 3.24, are set ones corresponding (SOC) and set anes corre-
sponding byte (SOCB). Notice that the SOC instruction has the ability to

Result compared
Instruction Meaning Format Explanation to zero Status bits affected

soc Set ones SOC 8.0 (5} OR (D) —~ (D) Y L> A > EQ
corresponding

50C8 Set anes SOCB S0 (Sbytel OR (Dbyte) = {Dbyte) Y L> A > EQ,OP
corresponding
bytes

sZc Set reros SZC S.D Bits in S that are 1 have their Y L> A> EQ
corresponding corresponding bits in D set

to 0

SZCB Set zeros SZCB S,D Bits in Sbyte that are 1 have Y L> A> EQ, OP
corresponding their corresponding bits in
bytes Dbyte set to 0

Figure 3.24 “Set ones corresponding” and “set zeros corresponding” instruc-
tions.
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directly OR the contents of a source operand with that of a destination
operand instead of an immediate operand such as the ORI instruction. In the
result, those bits of the destination that correspond to bits in the source that
are logic 1 are switched to the 1 logic level. The SOCB instruction works in
the same way except that it operates on the most significant byte or least
significant byte of the data word.

Notice that the other two instructions in the group, set zeros corre-
sponding (SZC) and set zeros corresponding byte (SZCB), work in the oppo-
site way. They cause those bit locations of the destination operand that are
logic 1 in the source operand to be set to logic 0.

Example 3.12
Describe the results of executing the following sequence of instructions.
LI R3,>8005
LI R2,>7FFF

INV R2
52C R2,R3

Solution: The first instruction loads R5 with its immediate operand and the next
instruction loads R,.

(R8) = 8005,, = 1000000000000101,
(R2) = TFFF, = 0111111111111111,
Now the bits in R, are complemented, giving
(R2) = (R2) = 1000000000000000,
Finally, the SZC instruction sets the MSB of R; to 0.
OLD (R3) = 1000000000000101, negative number
NEW (R3) = 0000000000000101, positive number

Example 3.13

Write a program that will disassemble the four hexadecimal digits in memory loca-
tion LOC. That is, starting from the least significant digit (LSD) in LOC and ending
with its most significant digit (MSD), they must end up in memory locations identi-
fied by HEX0, HEX1, HEX2, and HEXS, respectively. Assume that the value in
LOCis ABCDy¢.

Solution:  The ANDI instruction can be used to mask off the hex digits of LOC.
However, to use it, the destination must be a workspace register. Therefore, let us
set up a workspace starting at >0400 by loading this value into the workspace
pointer with the instruction

LWPI >0400
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We will use workspace register R, to store temporary results. Therefore, LOC
must first be moved there and then its LSD masked off with the ANDI‘instruction.
To do this, we execute the following instructions:

MOV @LOC,R2
ANDI R2,>000F

Executing these instructions causes the contents of R, to become equal to
000Dy,. This value must now be moved to memory location HEXO. This is done
with the instruction

MOV R2,@HEXD

The next digit in LOC can be masked off and stored at HEX1 in a similar
way.

MOV @LOC,R2
ANDI R2,>00F0
MOV  R2,@HEX1

The other two digits are masked off and moved to HEX2 and HEX3, respec-
tively, using the same instruction sequence. In these two cases, the masks used in
the ANDI instruction are OF00,5 and F000,g, respectively. The complete program
is listed in Fig, 3.25.

Lwel 0400
MOV @LOC, R2

ANDI  R2, * 000F

MOV R2, GHEXQ

MOV @LOC, R2

ANDL  R2, - 00FO

MOV R2, @HEX]

MOV ©LOC, R2

ANDI  R2, > OF00

MOV R2, GHEX2

MOV ©LOC, R2

ANDI RZ, - FOO0  Figure 3.25 Program for disassem-
MOV R2, @HEX3  bling packed hexadecimal digits.

3.10 SHIFT INSTRUCTIONS

The shift instructions are provided in the instruction set of the 99000 so that
the bits of data in a workspace register can be shifted to the right or to the
left. The four shift instructions, as shown in Fig. 3.26, are shift right arith-
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Result compared

Instruction Meaning Format Explanation to zero Status bits affected
SRA Shift right SRA R,I Shift (R) right by I bit Y L>A>EQC
arithmetic positions, fill the vacated
MSB positions with the
original content of bit 0
of R
SLA Shift left SLA RI Shift (R) left by I bit Y, L> A>, EQ,C, AF
arithmetic positions, fill the vacated
LSB positions with 0
SAL Shift right SRL R.I Shift (R) right by [ bit Y L> A> EQ,C
logical pasitions, fill vacated
MSB positions with
2eros
SRC Shift right SRC R,I Shift (R right by [ bit Y L>A>EQC
circular positions, fill the vacated

MSB positions by those
shifted out at the LSB

Figure 3.26 Shift instructions.

metic (SRA), shift left arithmetic (SLA), shift right logical (SRL), and shift
right circular (SRC).
Notice in Fig. 3.26 that the SRA instruction has the format

SRA R,|

Here R identifies the workspace register whose contents are to be shifted and
I indicates by how many bit positions. The value of I can be any number
from O through 15. Each time a bit shifts to the right, the MSB location that
is vacated is filled with the original logic level of the MSB. Moreover, the last
bit shifted out of the LSB location is stored in the carry bit of the status
register.

An example is the instruction
SRA R3,2

Assume that R, originally contains 1234 4.
ORIGINAL (R3) = 12344 = 0001001000110100,

Execution of the instruction causes all bits in R; to be shifted two bit posi-
tions to the right. Since the MSB of the original number is logic 0, the two
vacated MSBs are filled with 0s. This maintains the sign of the number.
Moreover, since the last bit shifted out was logic 0, carry bit C is also logic 0.
This gives

NEW (R3) = 0000010010001101, (C)=0
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Looking at Fig. 3.26, we also find descriptions of the other three in-
structions. Notice that SLA R,I causes bits of data in R to be shifted I bits
to the left. This time the vacated LSB locations are filled with zeros and the
last bit shifted out from the MSB location ends up in carry.

As shown in Fig. 3.26, SRL works the opposite of SLA. In this case,
the bits are shifted to the right and the vacated MSBs are filled with Os. The
last bit shifted out at the LSB location is found in C.

The shift right circular instruction, as indicated in Fig. 3.26, also causes
the contents of the register to be shifted right by I bits. But this time the bits
shifted out from the LSB position are reloaded at the MSB position. Carry
ends up holding the logic level of the last bit shifted out at the right.

There is one restriction to the use of workspace registers with the shift
instructions, This is that R can equal R, through R, but not R,. The reason
for this is that when I is specified as 0, the shift count is specified by the
four LSBs of Ry. This count must be loaded prior to the execution of the
shift instruction.

Here is an example of how R, is used to specify a shift count.

Ll RO,>0002
SRA R3,0

The result of executing these two instructions is identical to that obtained
by executing the instruction SRA R3,2.

One use of shift instructions is to multiply or divide the contents of a
register by powers of 2.

Example 3.14
If the contents of R are 1234, what is the effect of executing the following shift
instructions?
SLA R3,2
SRL R3.3
SRC R3,2

Solution: The original register R, contents are
(R3) = 0001001000110100,

The first instruction shifts the contents of Rj left by two bit positions. Logic 0 is
loaded into the two LSBs and 0 into carry. That is,

(R3) = 0100100011010000, (C)=0

This operation is illustrated in Fig, 3.27(a).

Next the contents of R; are shifted right 3 bits. This time three Os ar: loaded
at the MSB location and the last bit shifted out of the LSB, which is also 0, ends up
in C.
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(R3) = 0000100100011010, (C)=0 Example 3.15 ‘
This result is shown in Fig. 3.27(b). Implement the following expression using primarily shift instructions to perform
Finally, the shift right circular instruction is executed. This causes the two the arithmetic.
LSBs of Rj to be shifted out and reloaded at the MSB end. The carry status ends up 3(Rs) + 7(Rg) ~ (R7)
equal to the value of the last bit shifted out and equals logic 1.
Solution:  Shifting left by 1 bit gives a multiplication by 2. However, to perform

(R3) = 1000001001000110,
This result is illustrated in Fig. 3.27(c).

©)=1

R3 Bit0 Bit 15

l Before

Q
0 I After

R3 Bit0

Ralajol°|°l°l'[°I°lwl“l°|°|1l*J°%m
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.
t
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Figure 3.27(a) Results from execution of SLA R3,2; (b) results from execution
of SRL R4,3; (c) results from execution of SRC R3,2.

multiplication by an odd number, we can use a shift instruction to multiply to the
nearest multiple of 2 and then add or subtract the appropriate value to get the de-
sired results.
The algorithm for performing the expression starts by shifting (Rs) left by

1 bit. This gives 2 times (Rs). Adding the original (Rs) gives multiplication by 3.
Next, the contents of R are shifted left by 3 bits to give 8 times its value. Subtract-
ing the original (R¢) once gives multiplication by 7. Expressing this with instruc-
tions, we get

MOV R5,R4

SLA R4,1

A R6,R4

MOV R6.,R7

SLA R73

S R6,R7

A R4,R7

It is important to note that we have assumed that 3 times (R; ) and 8 times (R ) do
not yield numbers with more than 16 bits. In other words, an overflow does not
occur.

The 99000 also provides instructions that implement 32-bit shift opera-
tions in addition to the 16-bit shift instructions we just described. These are
the double-precision shift instructions: shift right arithmetic double (SRAM)
and shift left arithmetic double (SLAM). Brief descriptions of the functions
of these instructions are provided in Fig. 3.28. Notice that these functions

Result compared
Instruction Meaning Format Explanation to zero Status bits affected
SRAM Shift right SRAM S,1 Shift (S, S + 2) rightby 1 Y L> A> EQC
arithmetic bit pasitions, fill vacated
double MSB paositions in S with
the original value of its
MSB, bits shifted out at
the LSB of S are shifted
in at the MSB of § + 2
SLAM Shift left SLAM 51 Shift (S, S + 2] left by [ Y L> A> EQ,C, AF
arithmetic bit positions, fill vacated
double LSB positions with 0 and
bits shifted out at the
MSB of S + 2 are shifted
in at the LSB aof S

Figure 3.28 “Shift double” instructions.
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are identical to the SRA and SLA instructions, respectively, other than that
they perform their shift operation on the 32-bit number in S and §+2,

Example 3.16
Describe the result of executing the following instruction sequence:
LI R5,>1234
LI R6,>5678
SLAM R5,2

Solution:  The first two instructions load Rs and R, respectively. This gives the
32-bit value

(R5,R6) = 123456784
= 00010010001101000101011001111000,

The SLAM instruction shifts these 32 bits two positions to the left. The LSBs
are filled with Os and the last bit shifted out resides in carry. The result is

(R5,R6) = 01001000110100010101100111100000,
Notice that the contents of the registers have changed:
(R5) = 0100100011010001; = 48D1,4

©)=0

and
(R6) = 0101100111100000, = 59E0,

ASSIGNMENT

Section 3.2

1

2,

3.

. Identify the source and destination c p

Can the 99000 directly store a word of data starting at an odd address? Explain your
answer.

Show how memory addresses BO0O,, to BO03,, are used to store the 32-bit number
76543210 .

If the address BOOO,q corresponds to workspace register Ry,, what are the contents
of workspace register WP?

. Identify the three parts of an assembly language instruction in each of the following
statements:
(a) AGAIN A RO,R3 ADD THE REGISTERS
(b) MOV R3,R7 SAVE RESULTS

ds for each stat t in problem 4.

Chap. 3 Assignment

21

Section 3.4

6.

Describe the difference between each of the following transfer notations:

(R1) > @LOC
(*R1) > @LOC
(*R1+) > @LOC
. What is the purpose of addressing modes? Why are there so many different kinds of
addressing?

Identify the addressing modes that are used for the source and destination operands
in the instructions that follow:
(a) MOV >1234,@>1234

(b) MOV ©@>1234,R2

(c) MOV R1,«R2

(d) MOV R1,#R2+
(e) MOV R1,@>1234(R2)
(f) Mov s-10

. If the contents of WP, R,, R,, and PC are >0800, >1000, >2000, and >0100,

respectively, compute the memory address of the source and destination operands (if
any) in each of the statements in problem 8.

Section 3.7

10.

Determine the results of executing each of the instructions in problem 8 and their
effect on status. Assume that at the start of each instruction, the contents of WP, R,
R,, and PC are >0800, > 1000, > 2000, and >0100, respectively.

11. Write an instruction sequence which stores the current contents of WP and ST in R,
and R, respectively, and then reloads them from R, and R, respectively.
Section 3.8
12. Are the following instruction sequences equivalent? Explain.
Sequence A Sequence B
LWPI >1000 LWPI >1000
A RO,R2 AM  RO,R2
A R1,R3
13. Consider the following two instruction sequences:
Sequence A Sequence B
LWPI >1000 LWPI >1000
Ll RO,>A000 Li RO,>A000
LI R1,>B000 Ll R1,>B000
MOV +«RO+, «R1+ MOV =RO,+R1
INC RO
INC  R1

MOV  =R0,+R1
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Are they equivalent? If not, modify B such that it provides an alternative way of per-
forming the same operation as A.

14. Given two 16-bit signed numbers in locations > A000 and >B000, write an instruc-
tion sequence that generates the following:
(a) The product of the two numbers stored at address >C000.
(b) The quotient of the number at > A000 divided by the number at >B000 stored

at >C004.

(c) The remainder of the division in part (b) stored at >C006.

4

99000 MICROPROCESSOR
PROGRAMMING I

Section 3.9

15. Use only logic instructions to write an equivalent of the instruction
MQV RS5,@>ABCD

Section 3.10

16. Write an instruction sequence that stores the word in register R, at odd address
>A001.

17. Implement the following arithmetic function:
F=9(Ry) — 7(Rs) + }(Ra)

Save the value of F at address >A000 in memory. Specify all assumptions made
when writing this segment of program,

4.1 INTRODUCTION

In Chapter 3 we discussed part of the instruction set of the 99000 micropro-
cessor. Using those instructions, we also covered some preliminary pro-

3 gramming techniques. Here we continue our study of the instruction set and
L introduce some more sophisticated programming techniques. Specifically,
the following topics are presented in this chapter:

1. Compare instructions

2. Jump instructions

3. Example programs employing loops

4. Subroutines and subroutine handling instructions

4.2 COMPARE INSTRUCTIONS

The instruction set of the 99000 provides instructions to compare the con-
tents of words in memory, bytes in memory, and workspace registers with a
mask. The compare instructions are shown in Fig. 4.1. Notice that there are
five instructions: compare immediate (CI), compare words (C), compare
bytes (CB), compare ones corresponding (COC), and compare zeros corre-
sponding (CZC). Depending on which instruction is used, the mask can be
specified as an immediate operand, the contents of a register, or even a value
in general data memory. The results of the comparison are indicated by
setting or clearing appropriate bits in the status register.

93
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Instruction Meaning Format Explanation Results compared Status bits affected
to zero
cl Compare CIR,I Lis compared 1o {R) Y L> A> EQ
immediate and the appropriate
status bits are set or
reset
[ Compare csD (S) are compared to Y L> A>,EQ
words the (D) and the
appropriate status bits
are set or reset
[=:] Compare CB S,D (Sbyte) are compared Y L>,A> EQ,OP
bytes to the (Dbyte) and the
appropriate status bits
are set or reset
coc Compare ones COC SR (R) are compared with N EQ
corresponding the (8) and the EQ bit is
set if R has 1 in every bit
that corresponds ta a bit
in S that is 1; otherwise,
EQ is reset
czc Compare zeros CZC SR (R) are compared with N EQ
corresponding the (S) and the EQ bit is
set if R has 0 in every bit
that corresponds to a bit
in S that is 1; otherwise,
EQ is reset

Figure 4.1 Compare instructions.

The simplest of the compare instructions is CI. As indicated in Fig. 4.1,
it compares the contents of the specified workspace register with an imme-
diate operand. The immediate operand is coded as the second word of the
instruction. Notice that execution of this instruction affects just three status
bits: logical greater than (L>>), arithmetic greater than (A>>), and equal
(EQ).

The next two instructions in Fig. 4.1, C and CB, are similar to each
other in that they both compare the value of a source operand to that of a
destination operand. However, C compares all 16 bits of the operands, while
CB compares just their upper or lower bytes. Again the L>>, A>, and EQ
status bits are set or reset to represent the results of the comparison. How-
ever, notice that CB also affects the odd parity (OP) bit. If the operands of a
CB instruction are specified as workspace registers, their most significant
bytes are compared and their least significant bytes remain unaffected.

For instance, let us consider the following instruction sequence:

LI R2,>AB34
Ll R3,>1234
CB R2,R3

Sec. 4.2 Compare |nstructions 9%

Here the most significant byte of R, which is AB,, is compared to the most
significant byte of R,, which is 12,4, From a logic point of view, AB, is
greater than 12,4. Therefore, status bit L>> is set. From an arithmetic point
of view, AB4 is a negative number, while 12,4 is a positive number. In this
case AB, is less than 12,¢. For this reason, A> is cleared. Moreover, the two
bytes are not equal, so the EQ bit is also cleared. The OP status bit is set
based on the number of bits that are logic 1 in the source operand. For our
example, the most significant byte of the source operand has an odd number
of 1s; therefore, OP is set.

The COC and CZC instructions are used to compare a source operand
with the contents of a workspace register. For COC, if all bits that are 1 in
the source operand are also 1 in the workspace register, the EQ status bit is
set. Moreover, CZC tests only those bits in the destination workspace register
that correspond to bits that are 1 in the source operand; however, EQ is set
only if these bits are all logic 0.

Example 4.1

Describe what happens to the bits in the status register as the following sequence of
instructions is executed.

LWPI  >0400

LI R1,>0000
LST  R1

Ll R2,>ABCD
LI R3,>1234
8 R2,R3

cB R3,R2

cl R2,>ABCD

MOV R2,@LOC
COC @LOC,R3
CLR R2

CZC R3,R2

Solution:  What happens in the status register as the instructions are executed is
summarized in Fig. 4.2. Arrows have been used to identify which bits are affected
by each instruction, Here we see that the first instruction loads WP with 0400,¢.
This sets up a workspace starting at address 0400,,. Status is not affected due to
the execution of this instruction. Moreover, the status bits are initially identified as
don’t-care states.

The next instruction loads R, with 0000,s. During the execution of this in-
struction, the resulting contents of the register are compared to zero and the L>,
A>, and EQ bits are adjusted appropriately. 0000,4 is not logically greater than
zero; therefore, L> is reset to 0. Furthermore, it is not arithmetically greater than
zero and A>> is also cleared. However, the result is equal to zero, so EQ is set to 1.

The LST R1 instruction loads the status register from R,;. R, contains
0000,¢; therefore, all bits of the status register are cleared.
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Instruction Function Status register
LWPL >400 Establish workspace starting at address > 0400 OO XX XXXX
1333
LI R1,> 0000 Load R1 with > 0000 00 TXXXXXXXXXXXXX
352000000808 N N
LST R1 Load ST with (R1) 0000000000000000 = >
e
L R2,> ABCD Load R2 with > ABCD 1000000000000000 = > 8000
Hi
LI R3,> 1234 Load R3 with > 1234 1100000000000000 = > CO00
H
C R2, R3 Compare the (R2) with the (R3) 1000000000000000 = > BODD
ol
cB R3, R2 Compare the MSbyte of (R3) with the LSbyte of (R2) 0100000000000000 = > 4000
+H
cl R2, > ABCD Compare the (R2) with > ABCD 0010000000000000 = > 2000
Hi
MOV R2,@LOC Copy the (R2) into @LOC 1000000000000000 = > 8000
4
COC @LOC, R3 Compare the (R3) with the (@LOC] for the 1000000000000000 = > 8000
corresponding ones
CLR R2 Load R2 with zeros 1000000000000000 = > 8000
i
CZC R3,R2 Compare the (R3) with the (R2) for the 1010000000000000 = > ACOO

corresponding zeros

Figure 4.2 Example program employing compare instructions.

The two LI instructions that follow load R, and R with the values ABCD ¢
and 1234, respectively. As each of these instructions is executed, the resulting
register value is compared to zero and bits ST, through ST, are adjusted. Notice
that loading ABCD; into R, causes L>> to be set, A> to be cleared, and EQ to be
cleared. On the other hand, loading 1234,¢ into R; causes both L>>and A> to be
set and EQ to be cleared.

The next instruction is from the pare group. It comp the word in R;
to that in Rs. Since ABCD,g is logically greater than 12344 but arithmetically less
than it, L> is set, A> is cleared, and EQ is cleared.

The next instruction is a “compare byte” instruction. It compares the most
significant byte of R3 (12,4) to the most significant byte of R, (AB)g). In this case,
the L> bit is cleared, A> bit is set, and EQ is cleared. This instruction also affects
the odd-parity (OP) bit. In this case, the source byte is 12,4, which has 2 bits at the
1 level; therefore, OP is cleared.

The contents of R, are now compared to the ir diate operand ABCD 4.

R; contains the same number. Since they are both equal, EQ is set, and both L>
and A> are cleared.

S sl L
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Next, the contents of R, are moved to address LOC. Therefore, the new data
at LOC equal ABCD . This affects status in this way: L>=1,A> =0,and EQ =
0.

Now the COC instruction tests the bits in Ry which correspond to bits that
are 1 in LOC to determine if they are all 1. This comparison is as follows:

(LOC) = ABCD,, = 1010101111001101 ¢
(R3) = 1234,, = 0001001000110100 ¢

In this way, we find that not all of these bits in R; are logic 1. Therefore, EQ is
cleared.

Execution of the next instruction clears R, and the status remains un-
changed. Finally, the CZC instruction is executed. It tests the contents of R to
determine if all bits that are logic 1 in R; are logic 0 in R,. Since R, was just
cleared, all of its bits are 0 and the comparison condition is satisfied. Therefore, EQ
is set.

4.3 JUMP INSTRUCTIONS

Earlier we found that the contents of the program counter identify the ad-
dress of the next instruction to be executed. This is because after an instruc-
tion is fetched from program storage memory and before its execution is
completed, the value in PC is incremented such that it points to the next
sequential word.

The programs we introduced in Chapter 3 were all examples of straight-
line programs. That is, one instruction after the other is fetched and exe-
cuted. For this reason, during their execution, PC increments sequentially
until each instruction in the routine has been fetched and executed.

However, most practical programs require that some parts of the pro-
gram be executed only if certain conditions have been met. It is for this
purpose that the jump group of instructions are included in the 99000’s
instruction set.

The 99000 microprocessor has two types of jump instructions: the
unconditional and conditional jump instructions. An unconditional jump
instruction always initiates a change in PC. This concept is illustrated in Fig.
4.3(a). Notice that when the instruction JMP AA is executed in part I, pro-
gram control is passed to a point in part III identified by label AA. Execu-
tion resumes with the instruction corresponding to AA. The locations in part
IT of program memory have been bypassed; that is, they have been jumped
over.

On the other hand, a conditional jump instruction performs the jump
(change in PC contents) only if the condition or conditions specified in the
instruction are met. When a conditional jump instruction is fetched, a test
is made prior to its execution to identify if the specified condition or condi-
tions exist. If they exist, the contents of PC are modified such that the next
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instruction is fetched from a new location in program memory; otherwise,
execution continues with the next sequential instruction.

Typically, the test conditions represent the present logic level of one or
more bits in the status register. For example, a jump may be initiated only if
the EQ bit is set.

Part 1
JMP  AA Unconditional jump
instruction
Part 11 Locations skipped

due to jump

AA  XXXXXX |o Nextinstruetion
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Looking at Fig. 4.3(b), we see that execution of the conditional jump
instruction in part I causes a test to be initiated. If the conditions ‘are not
met, the NO path is taken and execution continues with the next sequential
instruction. This corresponds to the first instruction in part II. However, if
the result of the conditional test is YES, a jump is initiated to the segment of
program identified as part III.

The jump instructions of the 99000 are shown in Fig. 4.4. Notice that
there is just one instruction used for unconditional jumps and its mnemonic
is JMP. The place to which the jump is to occur is specified as follows:

JMP  LABEL

This says to jump to the statement with the tag LABEL.

executed
Part I
(a)
Part 1
JNC AA |+ Conditi jump instruction
XXXXX X‘
- Next instruction executed
CO"::;:I’\IOS b if condition not met
Part Il Locations skipped

if jump taken

Next instruction executed

- AA XXXXXX fe— if condition met

Part III

(b)

Figuze 4.3(a) Unconditional jump program sequence; (b) conditional
jump program sequence.

T ——

Instruction Meaning Status conditions for jump
IMP Jump uncenditiona| None
JEQ Jump on equal EQ=1
JNE Jump on not equal EQ=0
JGT Jump on greater than (arithmetic) A>=1
JET Jump on less than (arithmetic) A>=0ANDEQ=0
JH Jump on high {logical) L>=1ANDEQ=0
JHE Jump on high or equal (logical) L>=10REQ=1
JL Jump on low (lagical) L>=0ANDEQ=0
JLE Jump on low or equal (logical) L>=00REQ=1
Joc Jump on carry cC=1
INC Jump on nocarry c=0
Jorp Jump on odd parity oP=1
JNO Jump on no overflow AF =0

Figure 4.4 Jump instructions.

Figure 4.5 illustrates this example. Notice that the jump instruction at
address 0400, is coded as 1003,4. Here the 3 in the LSD location is the dis-
placement of the jump to address with respect to the address of the JMP
instruction. When this instruction is executed, the displacement is multiplied
by 2 and added to the updated value in PC. This gives 0408,,. Therefore, a
jump takes place to the address corresponding to the tag LABEL and execu-
tion continues with the fetch of the instruction located at address 0408,,.
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Address  Memory contents  Instruction In this way, we see that the instructions from address 0402, through
0406, are not executed. -
L 1003 HMFLABEL Our example instruction could be written in several different ways and
0402 XXXX still get coded and executed the same. For instance, if it were written as
IMP >408
95000 [LABEL) 0408 XXXX execution would continue at the same point. Another way that is frequently
PC 040A XXXX used is to specify the number of bytes that are to be jumped over. Using this
approach, the instruction is written as
wl__ 1]
JMP $+8

[]
 —

The $ sign indicates that the signed number that follows represents the num-
ber of bytes to the jump to address with respect to the current value in PC.

The displacement is coded into the eight leasi significant bits of the
JMP instruction word. With this 8-bit signed displacement, the maximum
range of jump permitted is limited to —127 to +128 words from the JMP
instruction.

The other 12 instructions in the jump group fall into the conditional
jump category. Looking at Fig. 4.4, we see that the status bits that can be
used as conditions for initiating a jump are logical greater than (L>>), arith-

(a)

AdieR. Mamory coments. strliotion metic greater than (A>), equal (EQ), carry (C), arithmetic overflow (AF),
and odd parity (OP).
z::: )::ii MPLROEL Notice that instructions are provided for different conditions of these

status bits. For example, the jump on equal (JEQ) instruction tests the equal
bit and initiates a jump if it is logic 1. Furthermore, a jump on not equal
(INE) instruction is provided to test the opposite condition. It initiates a

39000 jump if EQ tests as logic 0.
j" (LABEL} 0408 XXXX Next instruction A similar set of instructions are provided for initiating jumps based on
PC 040A XXXX the carry bit. They are jump on carry (JOC) and jump on no carry (IJNC).
The instructions JLT, JH, JHE, JL, and JLE test two status bits instead
WP:’ of one. Notice that in some cases both conditions must occur to initiate the
Jjump, but in other cases either of the two conditions can occur. An example
ST I: is the JLT instruction, which stands for *jump on less than arithmetic.” We
: do not have a single status bit that indicates this condition. However, if both
ERI:] A> and EQ are cleared after the execution of an instruction, the result
represents the arithmetic less than condition. Therefore, JLT tests both A >
ALU and EQ, and if they are both logic 0, the jump is initiated.
Example 4.2

(b}
It is required to move a set of N 16-bit data points that are stored in a block of

Figure 4.5(a) Execution of the JMP LABEL instruction; (b) result memory starting at location BLK1 to a new block starting at location BLK2. Write
after execution. a program to perform this function.
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(R1) = Painter 1o the data point
t0 be moved
{R2) = Painter to the location where
the data point is to be placed
Establish workspace

51 up ‘moved from’ (R3) = Num::t of points to be

and ‘moved to’ oo
pointers and the
counter

NXTPT

Move the next
point

All
points moved
?

LWPI > 0400
LI R1, BLK1I
LI R2, BLK2
LI R3, N
NXTPT MOV "R1+, "R2 +
DEC R3
INZ NXTPT
Figure 4.6 (a) Data block transfer
(b} program flowchart; (b) program.

Solution:  The flowchart in Fig. 4.6(a) shows a plan for implementing the block
data move function. Here we begin by setting up a workspace and then defining
two of its registers as pointers and another as a counter. Workspace register R, is
one pointer. It initially contains starting address BLK1 of the first block in
memory. The other pointer is R and it initially contains starting address BLK2 of
the second block in memory. That is, R, points to the first storage location in the
block of memory locations from which data are to be removed and R, points to the
first storage location in the new block of memory locations where data are to be
placed. The counter R; keeps track of how many words of data have been trans-
ferred. It is initially loaded with the value N.

The workspace pointer register, block address pointers, and counter can be
initialized with the following sequence of instructions:
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LWPI  >0400
LI R1,BLK1
LI R2,BLK2
L R3,N

A MOV instruction is used to perform the data transfer. To permit simple
transfer of the next data point, indirect autoincrement addressing mode can be
employed for both its source address pointer (R;) and destination address pointer
(R;). In this way, the address is aut tically iner ted and no additional in-
structions are needed to increment the block address pointers. Each time a word is
transferred, the count N in R, is decremented by 1, In this way, it tells how many
more transfers must still take place. When it reaches zero, the block transfer is com-
plete. The value of the count can be used to indicate whether or not to stop repeat-
ing the instruction sequence that performs the data transfer.

A sequence of instructions that perform the block move include a move
operation, decrement of R, and a test and jump to the move instruction if the
value in Rj is not zero. This is performed with the following instruction sequence:

NXTPT MOV «R1+,=R2+
DEC R3
JINZ NXTPT

This part of the program is what is known as a loop and it is repeated N times. That
is, there will be a jump performed from the JNZ instruction back to the statement
with the NXTPT (next point) label. This jump occurs each time the JNZ instruc-
tion is executed until R; equals zero. When R; equals zero, the jump is not per-
formed; instead, program execution continues with the next sequential instruction.
The complete program is listed in Fig. 4.6(b).

4.4 PROGRAM EXAMPLES INVOLVING LOOPS

Now that we have introduced the compare and jump instructions and have
shown how to form a software loop, let us consider some more complex pro-
gramming examples that use these instructions and techniques.

Example 4.3

Given N data points that are unsigned 16-bit numbers and stored in consecutive
memory locations starting at address DATA, write a program that finds their
average value. Assume that the sum found by adding all N data points will not yield
a result bigger than 32 bits.

Solution: A flowchart for solving this problem is shown in Fig. 4.7 (a). It imple-
ments an algorithm that finds the average of N data points by adding their values
and then dividing the sum by N. To do this in software, we must first set up a work-
space. Then one of its registers can be dedicated as a pointer to the starting loca-
tion of the table of data points in memory. For this pointer we have chosen Rj.



104 99000 Microprocessor Programming | Chap. 4

Another register can be used as a counter that indicates how many numbers have
been added. This will be Rs. Two other registers, R, and R,, will be assigned to
hold the 32-bit sum and another register, Ry, will contain the average at the end of
execution of the program. Moreover, N representing the number of data points to
be averaged is saved in Rs.

(R1) = Most significant word

of sum
(R2) = Least significant waord
of sum
Workspace pointer = 0400 (R3) = Pointer to data paints
Summation = 0 (R4 = Counter
Data pointer = DATA _ .
CourisersN (RS) = Saved initial count
(RS) = counter (R15) = Average of the data
points
NXTPT

Add the next data
point to the
LSword of the sum

Add 1 to the MSword
of the sum

SKIP

Decrement the o o
counter LR £z
CLR R1
L R3, DATA
LI R4, N
MOV R4, R5
NXTPT A “R3 + R2
JNC SKiIP
e . INC R1
I 10 Obiain the sverage e be
INZ NXTPT
Div RS, R1

m MoV R1, R15

(a) (b)

Figure 4.7(a) Flowchart of a program for finding the average of N unsigned
numbers; (b) program.
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The program begins by loading the workspace pointer and clearing the regis-
ters that are to accumulate the sum, R; and R;. This is done with the instructions

LWPI >0400
CLR R2
CLR R1

Next, R is loaded with the address of DATA to act as a pointer and R, is loaded
with the value of N. N is then saved in R for later use in calculating the average.
The instructions for this purpose are

L R3,DATA
LI R4,N
MOV  R4,RS

For the summation of the N numbers in the table, we use the word addition
instruction of the 99000. This instruction can be coded with indirect workspace
addressing with autoincrement for its source operand R3 and workspace direct ad-
dressing for its destination operand R,. In this way, R will always point to the
next value in the table and the sum is generated in register R,. Each time an addi-
tion is performed, the carry bit is tested. If it is 1, the contents of R, are also incre-
mented by 1. Then the count in R4 is decremented by 1. In this way, the value in
R4 represents the number of data points that remain to be added. The loap is ter-
minated when the count is tested to be zero. If the count is nonzero, the summa-
tion routine is repeated to add the next data point.

The summation loop is written as follows:

NXTPT A <R3+ R2
JNC  SKIP
INC R1

SKIP DEC R4
INZ  NXTPT

After this loop has executed N times, we will have accumulated the sum in
R, and R,. Once the sum of the N numbers in the table is available, the average can
be obtained by simply dividing it by the original value of N held in Rs. For this rea-
son, the program continues as follows:

DIV RS,R1
MOV  R1,R15

This average calculation program is listed in Fig. 4.7 (b).

Example 4.4

It is common in computer systems to have a need to convert numeric data ex-
pressed in binary-coded decimal (BCD) code to binary form. This conversion can be
done with hardware; however, it is more common to perform the conversion in
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software. Write a program that will convert a four-digit BCD number to its equi- number is'ln{lovedlintc_) Rz ;:: :hﬂtthe::;sgzltt ‘ﬁ ;2 bisti :::i:il:n;;i !:i; :llox) mt:r;srt{l;:

g = MSD D;. This value is a 0 2- igine .
A were ze:;o, we have initialized the result with Dj. Next, R, is shifted left 4 bits;
Solution:  Let us begin by defining an algorithm that can be used to convert a
BCD number to a binary number. For the general BCD number, (R1) = Given BCD number

(R2) = Equivalent binary number
N =D3;D,D
BB R (R4) = Counter

its equivalent decimal number is given by the expression (R5) = Decimal scaler

Nyp = 1000(D3) + 100(D;) + 10(D,) + D,

This expression can be reorganized to give

Nio = Do +10(D; + 10(D, + 10(D3))) R
4 This expression suggests an algorithm that can be implemented using a software Workspace pointer = 0400
i loop. Notice that if we start with the MSD D, multiply it by 10, and then add the BCD‘mfnnger ~R1
S next MSD D, we will get our first temporary result. This same sequence can be per- 2::““: o
formed twice more on the temporary result, adding first D; to the product and Scaler = 10
then Dy, to produce the final result,

The flowchart in Fig. 4.8(a) shows the implementation of this algorithm. We
begin by establishing a workspace in memory. Registers R, and R, are assigned to
hold the BCD number and its equivalent binary number, respectively. R, must be
loaded with the BCD number, which is stored at the location called BCDN. Then
R, is cleared. Moreover, we will assign R, as the digit counter and Ry as the decimal

NXTDGT

Result X 10~ result

scaler. These two registers must be initialized to 4 and 10, respectively. Initializa- WED
tion is performed with the following instruction sequence:
LWPI  >0400
W R1,@BCON Result + extracted
CLR Fl2’ digit - result
L R4,>0004
Ll RE,>000A LWPI - 0400
Shift the next MSD T R1, ®BCON
Looking at the algorithm, we see that it requires multiplication of the prior inte the MSD location i o
result by 10 and then its addition with the next less significant digit. This routine L R4, - 0004
¢ can be repeated until the conversion is complete. This part of the algorithm is im- u RS‘ —
plemented with the following sequence of instructions: Decrement counter "

NXTDGT MPY RS, R2

NXTDGT MPY RS R2 MoV R3, R2

MOV R3,R2 MOV R1, R3

MOV  R1.,R3 SARL R3, 12

SRL  R3,12 A R3, R2

A R3,R2 SLA R1. 4

SLA R1,4 4

DEC R4 DEC R:

JNE NXTDGT JNE NXTDGT
{a) {b)

This part of the program starts with a statement identified with label
NXTDGT. In this statement, we multiply the result, wich is the contents of R,, by Figure 4.8(a) Flowchart for a BCD-to-binary conversion program; (b)
the scaler held in Rs. Initially, this is 0 X 10, equal to 0. Then the value of the BCD program.
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therefore, BCD digit D, resides in the MSD location. The value R, is decremented
by 1 and then tested for 0. Since the condition is not satisfied, control is returned
to NXTDGT. This sequence repeats until the value in R; is the equivalent binary
number, The complete program is shown in Fig. 4.8(b).

Example 4.5

It is required to sort an array of 16-bit signed binary numbers such that they are
arranged in ascending order. For instance, if the original array is

5,1,29,15, 38, 3,—8,—32
After sorting, the array that results would be
—32,-8,1,3,5,15, 29, 38

Assuming that the numbers of the array are stored in memory at consecutive ad-
dresses from 0400, through 04FE,s, write a program that will sort them into
ascending order.

Solution:  First, we will develop an algorithm that can be used to sort an array of
elements Aq, A;, A, through AN into ascending order. One way of doing this is to
take the first number in the array, which is Ao, and compare it to the second num-
ber, A;. If Ag > A;, the two numbers are swapped; otherwise, they are left alone.
Pfext. Ao is compared to A, and based on the results of this comparison, they are
either swapped or left alone. This sequence is repeated until A, has been compared
with all numbers up through AN. When this is complete, the smallest number will
be in the A, position.

Now A; must be compared to A; through Ay in the same way. After this is
done, the second smallest number is in the A, position. Up to this point, just two
of the N numbers have been put in ascending order. Therefore, the procedure must
be continued for A, through AN—1 to complete the sort.

Figure 4.9 illustrates the use of this algorithm for an array with Jjust four
numbers. The numbers are A, = 5, A;=1,A,=29,and A, =—8. During the sort

1 0 1 2 3 Status
All) 5 1 29 —8 | Original array
o
A(l) 1 5 29 —8 | Array after comparing A(0) and A(1)
—
Al 1 5 29 -8 Array after comparing AID) and A(2)
— e
AlL) -8 5 29 1 Array after comparing A{0) and A(3)
L — |
A1) -8 5 29 1 Array after comparing A1) and A(2)
-~
AlD -8 1 29 5 Array after comparing A(1) and A(3)
—
A(D) -8 1 5 29 [ Array after comparing A(2) and A[3)

Figure 4.9 Sort algorithm demonstration.
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sequence, Ao = 5 is first compared to A; = 1. Since 5 > 1, Ap and A, are swapped.
Now Ay = 1 is compared to A, = 29. This time 1 < 29; therefore, the numbers are
not swapped and A, remains equal to 1. Next, Ao =1 is compared with A; = —8.
Ay is greater than A, Thus A, and A, are swapped and A, becomes equal to —8.
Note in Fig. 4.9 that the lowest of the four numbers now resides in Ag.

The sort sequence in Fig. 4.9 continues with A; = 5 being compared first to
A, = 29 and then A; = 1. In the first comparison, A; < A,. For this reason, their
values are not swapped. But in the second comparison, A; > A,; therefore, the two
values are swapped. In this way, the second lowest number, which is 1, is sorted
into A,. .

It just remains to sort A; and A;. Comparing these two values, we see that
29 > b, This causes the two values to be swapped such that A, = 5 and A; = 29,
As shown in Fig. 4.9, the sorting of the array is now complete.

A flowchart showing how this algorithm can be implemented in software is
shown in Fig. 4.10(a). The first block represents the initialization of the workspace
pointer and two pointers called PNTR, and PNTR;. The workspace pointer will be
initialized to 0200,,. PNTR, is an address pointer to the first element in the array
and is loaded into R, of the workspace. This element resides at address 04055, The
other address pointer, PNTR3, which identifies the location of the last element in
the array, is loaded into R;. This value is 04FE;¢. The instructions required to per-
form this are

LWPI >0200
LI R1,>0400
LI R3,>04FE

Next, another pointer is established. This is PNTR,, which is a pointer to the
next element that is to be used for comparison. Initially, we make it equal to
PNTR, and then increment it by 2 such that it points to the next word in the array.
In the flowchart, we see that this is one of the places to which a conditional jump
may be performed. Therefore, it is identified with a label in the program. We are
using the label AA for this purpose. This requires the following instructions:

AA MOV R1,R2
INCT R2

Now comes the part in the program where the values in the array are com-
pared to each other. Based on the results of these comparisons, the elements are
swapped or left alone. We will start this part of the program with the label BB.
First, the array element peinted to by PNTR, is compared to that pointed to by
PNTR,. Then the L>> and EQ bits of the status register are tested to determine the
relationship between the two elements. If the previous element is less than or equal
to the next element, the numbers are not to be swapped and a jump is initiated to
a part of the program identified by the label CC. Otherwise, the value stored at the
location pointed to by PNTR, is stored temporarily in R,. Then the value of the
array element pointed to by PNTR, is moved to the location pointed to by PNTR,
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e (- A el >0200
LI R1,> 0400
Initiali ot A LI R3, > D4FE
PNTRI m;:; PNFRS Z:z: ::;; AA MOV R1, R2
0406 A4) INCT R2
AA 0408 Al5) BB [ “R1, *R2
JLT cc
[ Initialize PNTR2 I D08 AlB) JEQ cc
) ) mMov "R2, R4
8o Mov "R1, "R2
04FE AN) MoV R4, *R1 :
cC INCT R2
c R2, R3 :
AT 8B 4’
JEQ BB
INCT R1
Cc R1, R3
(*PNTR1)={*PNTR2) LT AA
cc (b)

Figure 4.10(b) program.

Update PNTR2

and the value saved in R4 is moved to the location pointed to by PNTR,. This per-
forms the swap of the two 16-bit numbers. This part of the program is

{PNTR2) < BB c *R1,#R2
) < (PNTR3) JLT cc

JEQ cc

MOV »R2,R4

MOV  +R1,*R2
MOV  R4,:R1

Update PNTR1

This completes the first comparison. The address in R, is incremented by 2
such that it points to the next number in the array. Then the address in R, is com-
pared to the end of array pointer address in Rj. If it is less than or equal to R;, the
first series of comparisons is not complete and program control returns to BB. This
is performed with the following sequence of instructions, which correspond to the
start of the part in the program denoted by CC:

(PNTR1) < (PNTR3)

(R1] = PNTR1 = Pointer to first element cc INCT R2

(R2) = PNTR2 = Pointer to next element c R2,R3
(R3) = PNTR3 = Pointer to last element LT 88
JEQ BB

(a)
Figure 4.10(a) Flowchart for sort algorithm;

When the address in R, is greater than that in Rj, the first number in the
array has been compared to all other elements in the array. Now we must incre-
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ment R; and then determine if it is pointing to the last element in the array, This is
done by comparing it to R;. If they are equal, the sort is complete. If not, control
must be returned to the spot in the program labeled AA. This is achieved with the
following program statements:

INCT R1
c R1,R3
JLT AA

The complete program is listed in Fig. 4.10(b).

4.5 SUBROUTINES AND SUBROUTINE HANDLING INSTRUCTIONS

A subroutine is a special segment of program that can be called for execution
from any point in a program. Figure 4.11 illustrates the concept of a sub-
routine. Here we see a program structure where one part of the program is
called the main program. In addition to this, we find a smaller segment
attached to the main program, known as a subroutine. The subroutine is
written to provide a function that must be performed at various points in the
main program. Instead of including this piece of code in the main program
each time the function is needed, it is put into the program just once as a
subroutine.

Main program
Call subroutine A Subroutine A
Next instruction First instruction

Call subroutine A

Next instruction

Return

Figure 4.11 Subroutine concept.

Wherever the function must be performed, a single instruction is in-
serted into the main body of the program to “call” the subroutine. The
branch (B), branch and link (BL), branch and link with workspace (BLWP),
and return workspace (RTWP) instructions are included in the instruction
set of the 99000 to deal with subroutines.

Remember that the contents of PC always identifies the next instruc-
tion to be executed by the 99000. Thus, to branch to a subroutine that
starts elsewhere in memory, the value in PC must be modified. The B, BL,
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and BLWP instructions have this ability and can be used to pass control to
the starting point of a subroutine,

After executing the subroutine, we want to return control to the
instruction that follows the one that called the subroutine. In this way, pro-
gram execution resumes in the main program at the point where it left off
due to the subroutine call. However, just the BL. and BLWP instructions
automatically save the linkage required to complete this return. The B or
RTWP instruction must be included at the end of the subroutine to initiate
the return sequence to the main program environment.

The operations of the subroutine handling instructions are summarized
in Fig. 4.12. Here we see that the BL instruction causes control to be trans-
ferred to a subroutine located at the address specified by its source operand.
For instance, in Fig. 4.13, the instruction

BL @SBRTA

causes the old value of PC, which points to the next instruction in the main
program, to be saved in register R, of the current workspace. In this way,
we see that the return linkage is the old value of PC that is saved in R,,. The
PC is loaded with the address value represented by the label SBRTA. SBRTA
identifies the starting point of the subroutine in memory.

Instruction Meaning Format Explanation
B Branch BS (SA) - (PC}
BL Branch and BL S (PC) — (R11)
link (SA) — (PC)
BLWP Branch and BLWP S {SA) — (WP)
load workspace (SA) + 2= (PC)

(OLD WP ~ [NEW R13)

(OLD PC) -~ (NEW R14)

(OLD 8T) -+ (NEW R15)

The INTREQ input is not tested
after completion of the instruction

RTWP Return RTWP (R13) - (WP}
wor kspace (R14) ~ (PC)
pointer (R15) — (5T)

Figure 4.12 Subroutine handling instructions.

To return to the main program, the last instruction of the subroutine
should be

B «R11

Execution of this branch indirect through R,, instruction causes the old
value of PC to be returned from R, to the program counter.
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: (R1) = Counter for the numbers
o 10 be generated
: (R2) = Pointer to the address at which
the number is to be stored
. Initialize (R3) = First number used in the
BL @SBRTA \ Subroutine A ‘WRV:'" :30“?2 generation
- = ber used in the
Next instruction SBRTA | Firstinstruction :ng = FIBSER (Rd) gs::mndﬂ::m eru
: {R4) #0001 (R5) = Generated number
(R5} + 0000
BL @SBRTA
i i Store the first two
ekt ; Figure 4.13 Subroutine program numbers of the series
% : B *R11 structure using the BL and B )

instructions.
Move the secand number
It is usually necessary for the main program to pass data to the sub- olihnisiesTio RS
routine that it is calling. These data are known as parameters and are passed
to the subroutine by simply moving them into specific workspace registers or NETNM
memory locations prior to calling the subroutine.
Let us consider an example of passing parameters to a subroutine. Calloptosiine @
Assume that the function of the subroutine is to add the contents of
registers Ry and R, and place the sum in R;. This can be done with the fol- LWt ——
lowmg instructions: (R4) — [R3} Generate next number u R1. > 0014
(R5) -- (R4) in series "
4 A1 L R2, FIBSER
MOV R2,R3 CLR R3
Store the L R4, > 0001
Whenever this function must be performed, it is called from the main generated number CLR RS
program as a subroutine. However, before calling it, registers R, and R, of MoV RS, *R2 +
the current workspace must be loaded with the numbers to be added. This is MOV R4, *R2 +
called passing parameters. MOV R4, RS
Example 4.6 NXTNM BL @SBRTF
4, R3
Write a program to generate the first 22 ¢lements of a Fibonacei series. In such a :2: :5: :4
series, the first number is 0, the second is 1, and each subsequent number is ob- MOV RS, *R2 +
tained by adding the previous two numbers. For example, the first 10 numbers of :
the series are DEC ;;xrw
INE
0,1,1,2,3,5,8,13, 21, 34 SBRTF A R3, RS
The part of the procedure by which the next number is obtained from the previous J L
two is to be performed in a subroutine. The series of numbers are to be stored in (& (b)

consecutive memory locations starting at address FIBSER.

Solution: A flowchart for the program together with the assignments of various
workspace registers are shown in Fig. 4.14 (a). The first part of the program defines Figure 4.14(a) Flowchart of a program for generation of a Fibonacci series;
a workspace and initializes some of its registers. This is done with the instructions (b) program.
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LWPI  >0400 SET UP WORKSPACE
LI R1,>0014 INITIALIZE COUNTER
LI R2,FIBSER INITIALIZE POINTER
CLR R3 INITIALIZE FIRST NUMBER FOR GENERATION
LI R4,>0001 INITIALIZE SECOND NUMBER FOR GENERATION
CLR RS INITIALIZE GENERATED NUMBER

MOV R5,«R2+ FIRST NUMBER OF SERIES
MOV R4, +R2+ SECOND NUMBER OF SERIES

The last two instructions cause 0 and 1 to be loaded into addresses FIBSER
and FIBSER+2, respectively. Therefore, the first two value of the series has been
stored and R; points to the storage location of the third number.

To generate the third number in the series, R is loaded from R, with the
instruction

MOV R4,RS

We are now ready to call the subroutine that does the addition to form the next
number in the series. This instruction must be a reference point to which the pro-
gram can loop; therefore, it is identified with the label NXTNM. It is implemented
with the instruction

NXTNM BL @SBRTF

From the branch instruction, we see that the start of the subroutine is identi-
fied by the label SBRTF. This sequence of instructions must add the present ele-
ment of the series to the previous element to get the new element. This is done with
the instructions

SBRTF A R3,R5
B +R11

After executing the subroutine, the branch instruction returns control to the
main program. Now some housekeeping is performed. The previous series number is
saved in R; and the present number is saved in R4. This represents passing of the
next set of parameters to the subroutine. The present number is stored in the series
location identified by the address in R,. Autoincrement addressing is used such that
R; always points to the storage location for the next element of the series. This is
achieved with the following instructions:

MOV R4,R3
MOV R5,R4
MOV R5,xR2+

Now the count in R, is decremented and tested for zero. If it is zero, the
program is complete; otherwise, control is returned to NXTNM for generation of
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the next number in the series. This part of the program is rep{esented by the
instructions

DEC R1
JNE @NXTNM

The complete program is presented in Fig. 4.14(b).

The BLWP instruction provides an alternative means for calling a sub-
routine. The mechanism that it performs is called a context switch. The
operation of the instruction is described in Fig. 4.12. Notice that execution
of BLWP causes new addresses to be loaded into the WP and PC registers of
the 99000. The locations of these addresses are specified by the source
operand. The address in WP defines a new workspace and that in PC the
instruction where execution is to resume. Moreover, the old values of WP,
PC, and ST are automatically saved in registers R 3, R4, and Ry, respec-
tively, of the new workspace. In this way, a new program context is defined.

At the end of the subroutine, a RTWP instruction must be included to
restore the original program environment. As shown in Fig. 4.12, execution
of RTWP causes the old values of WP, PC, and ST to be returned to their
corresponding registers within the 99000.

Example 4.7
Describe the structure and execution of the context switch mechanism for calling
subroutines relative to the diagram in Fig. 4.15.

Solution: Looking at Fig. 4.15, we see that the main program starts at the point
marked MPGM (main program) and it uses a workspace whose location is identified
by WSM (main workspace). There are two subroutine calls from the main program,
one to SUBA (subroutine A) and the other to SUBB (subroutine B). These subrou-
tine calls are initiated by BLWP instructions at addresses CSBA (call subroutine A)
and CSBB (call subroutine B), respectively, of the main program. The vectors PCA
(program counter A) and WSA (workspace pointer A) that identify the starting
point of subroutine A and its workspace are stored at VA and VA+2 (vector A),
respectively. Moreover, PCB (program counter B) and WSB (workspace pointer B)
are stored at VB and VB+2 (vector B), respectively. In this way, we see that each
subroutine as well as the main program has its own workspace.

Execution of the program begins with the instruction located at the location
identified by MPGM in program memory. From this point, instructions are exe-
cuted sequentially until the BLWP instruction at CSBA is encountered. As this in-
struction is executed, a context switch is initiated. The vector is specified as the
contents of VA and VA+2. At VA, address WSA is stored and at VA+2 address
PCA. These values are loaded into the WP and PC of the 99000, respectively. Then
the 99000 stores the old values of WP (WSM), PC (CSBA+2), and status (ST) in
registers R 3 through R of the workspace at WSA.

Now the 99000 continues execution with the first instruction of subroutine
A. Execution proceeds sequentially through the instructions of the subroutine until
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PCA - 2 5
r MPGM First instruction <
2
> 5
e
k-
BA
CSBA BLWP @VA CALL SU ATWP J
WSA
CSBA + 2 0 =
13
s
21 <
= g
> &
Wi CALL SUBB x
cses BLWP @VvB U (R13] = WS ;0
+2
08 (R14) = CSBA + 2
(R15) = ST at CSBA J
- WSM RO
3 4 PCB 5
3 First instruction o
H ®
R15 €
L Lz
8
E-3
v
RTWP
< wsBe S
5 { VA T WSA RO
3 Lvas2 L1 o pca .
P
8
g
(R13) = WSM H
o =
B{ VB = WSB {R14) = CSBB 1 2
8lvpiz PCB (R15) = STat CSBB | |

Figure 4.15 Context switch mechanism for the BLWP instruction.

the RTWP instruction is executed. This instruction initiates the return context
switch to the main program. It causes the values of WSM, CSBA+2, and ST to be
returned to the registers of the 99000 and execution resumes with the instruction
at CSBA+2. From here, execution continues sequentially in the main program.
When the second BLWP instruction is executed, another context switch is
performed. This time the vector WSB and PCB at VB and VB+2 are loaded into the
WP and PC; the old WP (WSM) is saved in R,3, the old PC (CSBB+2) is saved in
Ris, and the old status (ST) is saved in R;s of the workspace at WSB: and program
control continues with the first instruction of subroutine B. Once again the last in-
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struction executed in the subroutine is RTWP, which causes control to be returned
to the main program at address CSBB+2.

ASSIGNMENT

Section 4.2

1.

2.

Describe the difference in operation and affect on status due to execution of the sub-
tract words and compare words instructions.

What happens to the EQ status bit as the following sequence of instructions is exe-
cuted? Assume that EQ is initially cleared.

LI R1,>1234

MOV R1,R2
(o] R1,R2
CzC R1,R2
COC R1,R2
Section 4.3
3. The program that follows implements what is known as a delay loop.

LI R7,>1000
DLY DEC R7

JGT DLY
NXT - ———

(a) How many times does the JGT DLY instruction get executed?
(b} Change the program so that JGT DLY is executed just 17 times.
(¢) Change the program so that JGT DLY is executed 2°? times.

Section 4.4

4.

o

Given a number N in the range 0 < N < 5, write a program that computes its fac-
torial and saves the result in memory location FACT.

. Write a program that compares the elements of two arrays A (I) and B(I). Each array

contains 100 16-bit signed numbers. The comparison is to be done by comparing the
corresponding elements of the two arrays until either two elements are found to be
unequal or all elements of the arrays have been compared and found to be equal.
Assume that the arrays start at addresses > A000 and >>B000, respectively. If the two
arrays are found to be unequal, save the address of the first unequal element of A(I)
in memory location FOUND; otherwise, write all Os into this location.

. Given an array A(I) of 100 16-bit signed numbers that are stored in memory start-

ing at address > A000, write a program to generate two arrays from the given array
such that one P(J) consists of only positive numbers and the other N(K) contains
only negative numbers. Store the array of positive numbers starting at address
>B000 in memory and the array of negative numbers at address > C000.
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7. Given a 16-bit binary number in Ry, write a program that converts it to its equivalent
BCD number in R,. If the result is bigger than 16 bits, place all 1s in Ry and R ;.

8. Given an array A(I) of 100 16-bit signed integer numbers, write a program to gen-
erate a new array B(I) as follows:

B(I)=A(I) forI=1,2,99 and 100

. MEMORY INTERFACE

B(I) = median value of A(I-2), A(I-1), A(I), A(I+1),

and A(I+2)  for all other Is DF THE 99000

9. Write a subroutine that converts a given 16-bit BCD number to its equivalent binary
ber. The BCD ber is to be passed to a subroutine through register R, and the
routine returns the equivalent binary number in R,.
10. Given an array A(I) of 100 16-bit signed integer numbers, write a subroutine to
generate a new array B(I) such that

B()=A() forI=1and 100

Section 4.5

and
B() =1(A(-1)+ 2A() + A(I+1))  for all other Is 5.1 INTRODUCTION

The values of A(I-1), A(I), and A(I+1) are to be passed to the subroutine in Up to this point in the book, we have introduced the 99000 microprocessor,

registers Rs, Rg, and R, and the subroutine returns the result B(I) in register R. its signal leads and internal architecture. Moreover, from a software point of
11. Write a seg of main program and show its subroutine structure to perform the view, we have covered its instruction set and how to write programs in

following operations, The program is to check repeatedly the three least significant assembly language. Now we will begin to examine the hardware interfaces of

bits in register Ry and depending on their setting execute one of three subroutines: the 99000. This chapter is devoted to its memory interface and external

SUBA, SUBB, or SUBC. The subroutines are selected as follows: memory subsystems. For this purpose, we have included the following

(1) If bit 15 of R, is set, initiate SUBA. topics:

(2) Ifbit 14 of R, is set and bit 15 is not set, initiate SUBB.

. Slow memory interface

. Demultiplexing the 99000 system bus

. EPROM/static RAM memory subsystem

. Extending the address space of the 99000

. Memory subsystem with error detection and correction
. Cache memory for the 99000 system -

(3) Ifbit 13 of R, is set and bits 14 and 15 are not set, initiate SUBC. 1. Memory interface block diagram
If the subroutine is executed, the corresponding bit of R, is to be cleared and then 2. Address space
control returned to the main program. After returning from the subroutine, the main 3. Data szati
program is repeated. 2 K QrEanizakion
4. Dedicated and general use of memory
5. Memory bus status codes and memory control signals
6. Read cycle
7. Write cycle
8
9

e
N = o

-
[*4)

121
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5.2 MEMORY INTERFACE BLOCK DIAGRAM

The 99000 microprocessor has the ability to address a memory subsystem
directly with up to 256K bytes of memory. Figure 5.1 shows the memory
system interface. It consists of the multiplexed address/data bus, which is
used to carry address information to the memory subsystem and transfer
data between memory and microprocessor. By “multiplexed’” we mean that
it works as an address bus and data bus at different periods of time during
the bus cycle. The ALATCH signal indicates when a valid address is on the
bus. Bus status lines MEM and BST,; through BST, indicate whether or not
a memory bus cycle is in progress and if so, which type of memory cycle it
is. The last three signals, R/W, WE, and RD, indicate the direction in which
the data are to be carried over the bus, that is, whether a read or write opera-
tion is to take place and when valid data are on the bus.

A/Dy-A/D,, PSEL/D,,

ALATCH

BST,-BST, >
Memory

MPU subsystem

g
z
=

|
A

3l

Figure 5.1 99000 memory interface.

5.3 ADDRESS SPACE

As shown in Fig. 5.2(a), the 99000 has a 15-bit external address bus. These
lines are labeled A, through A, and are used to carry address words from
the microprocessor to the memory system. However, the program counter
and workspace registers that are internal to the 99000 are 16 bits in length.
For this reason, a 16-bit address is shown with A, representing the MSB and
A;; the LSB.

The extra address bit, A,q, is not provided on a pin for external use;
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External Intemal
- A Keven

" A AR R

Byte select

(a)

External Internal
A Al

-

e Ta [ [a TR [R e R e e e o]
[ [~]~[~]~] -

Page select Byte select

Irsﬁ

(b)

Figure 5.2(a) Address word format; (b) extended address word format.

instead, it is retained within the 99000. For instruction fetches, this bit is
always 0. Therefore, instruction words always reside at even addresses. But
for data accesses, it is used for byte selection during byte data operations.
Logic 0 at internal bit A, selects what is known as the even byte and logic
1 selects the odd byte.

With just a 16-bit address, the 99000 has the ability to address up to
2'6 = 65,536 byte locations in memory. This is sometimes called the address
reach of the microprocessor or its logical address space. If we consider the
address reach of the 99000 from a 16-bit word point of view, the 15-bit
external bus provides for access of 2'° = 32,768 word locations.

The address reach of the 99000 can actually be extended in a paged
mode to two 64K-byte pages. This gives a total memory system storage of
128K bytes. To do this, bit STg of the status register is employed as a
seventeenth address bit and its logic level is multiplexed out at pin 31
(PSEL) together with the address. This extended address is shown in Fig.
5.2(b). In this way, software can be used to make status bit STy logic 0 or
logic 1. In turn, the PSEL signal can be used to enable one of two 64K-byte
pages of memory for operation.

The 99000’s address reach can be further expanded to 256K bytes by
decoding the memory bus status codes. The codes output on BST, through
BST; can be decoded with external circuitry to produce a program memory
select signal and a data memory select signal. In this way, the memory sub-
system can be segmented into a 128K-byte program memory segment and
a 128K-byte data memory segment.
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5.4 DATA ORGANIZATION

Data and instruction transfers between the 99000 and its memory subsystem
take place over the 16-bit data bus, D, through D 15. Actually, four different
formats of data transfers can take place over this bus. They are bit, byte,
word, and long-word transfers. Which type of transfer takes place depends
on the instruction that is being executed.

Word data transfers are the most common type. This is because all in-
struction fetches and many operand transfers are 16 bits in length. For word
transfers, the data bus is organized as shown in Fig. 5.3(a). Here Dy iden-
tifies the MSB and D, the LSB. Notice that D, can also be used as a sign bit
for representation of signed numbers.

An example of an instruction that initiates word data transfers is the

MSB LS8
[0 [0 Jo: o [o[os [0 Jor ou] 00 [on] 03] 0a [0u]0n ] 00 ]
Sign bit
e v
Ward
(a)
Word Memory
address contents
0000, WORD 0
0002, WORD 1
0004, WORD 2
.
FFFCye WORD 32766
FFFEg WORD 32767

()
Figure 5.3(a) Word data format; (b) word organization of memory.
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add word (A) instruction. It causes 16-bit source and destination operands to
be transferred over the bus. ’

Figure 5.3(b) shows how word data are stored in the memory of a
99000 microcomputer. As far as the microprocessor is concerned, word data
are stored at what are called even address boundaries; that is, even-addressed
locations such as 0000,,, 0002,;, 0004, and up through FFFE,,. This
happens because the LSB of the address, A, is not used in word accesses of
memory and is always set at 0. Therefore, the address internal to the micro-
processor is an even binary number.

The 99000 also has the ability to execute many of its instructions with
bytes of data as well as words. The byte organization of the data bus is
shown in Fig. 5.4(a). Here we see that even bytes are passed over bus lines

MSB LSB MSB LSB
Lo fefen oo J e oo [oe oo Jououou oo ]on
Sign bit Sign bit
[ - ;e v ,

Even byte Odd byte
(a)
Even byte Memory QOdd byte
address contents address
00004 BYTEO BYTE 1 0001,
0002 BYTE 2 BYTE3 0003,
0004, BYTE 4 BYTE S 0005,
00065 BYTE 6 BYTE7 0007 ¢
'
FFFE, BYTE 65534 BYTE 65535 FFFF

i)
Figure 5.4 (a) Byte data format; (b) byte organization of memory.
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D, through D,, where D, represents the MSB and D, the LSB. On the other
hand, odd bytes are carried over bus lines Dy through Ds. In this case, Dy is
the MSB and D, the LSB.

The byte organization of data in memory is shown in Fig. 5.4(b).
Notice that each 16-bit word location is used to store two bytes, called the
odd byte and the even byte. The “add byte’” (AB) instruction is an example
of an instruction that processes data in byte format. Actually, when exe-
cuting this instruction, the 99000 always accesses the full word operands.
However, it selects either the odd byte or the even byte based on the logic
level of internal address bit, A;s, and processes it. The other byte is passed
through unaffected.

Some of the instructions of the 99000 perform operations on what are
i called long words of data. These 32-bit operands are stored in two consecu-
4 . tive 16-bit memory locations and are passed over the data bus as two con-
; secutive word transfers. An example of an instruction that processes data in
the long-word format is the double-precision add (AM) instruction.

Example 5.1

=

Assume that the sign bit of a data word is set to logic 0 for positive numbers and to
1 for negative numbers. If the data byte —32,¢ is to be written over the bus to
address FFOB,4 in memory, what is the data word in binary form, in hexadecimal
form, and over which bus lines is it carried?

S'olutian: Let us begin by converting the decimal number 32 to binary form. This
gives
32,0 = 00100000,
i Expressing it as an 8-bit negative number by taking the 2’s complement, we get
! —32,, = 11100000,
and in hexadecimal form it is
A ~82,0 = B0y

Address FFOB, is an odd-byte address. Therefore, the data are carried over data
bus lines Dg through D5 to the memory system.

5.5 DEDICATED AND GENERAL USE OF MEMORY

In the 99000 microcomputer system, some of the storage locations in
memory have dedicated functions. Figure 5.5 is a memory map that shows
the 99000’s logical address space and its dedicated areas. From the map we
see that the first 32 word locations of memory are reserved for storage of
interrupt vectors. This corresponds to the address range from 0000,, to
003E,;. These vectors identify the starting points of the interrupt service
routines in memory.
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Memory Memary
address contents
0000,
Interrupt
vectors
003E 6
0040,
Extended
operation
vectors
007F 4
008015
General
use
memory
FFFA.,
FFEC. Nonmaskable
i interrupt
FFFEsg vector Figure 5.5 Dedicated and general
use of memory.

Following this block in memory is another block of 32 reserved word
locations. These locations have a similar dedicated function; however, the
vectors stored here are for the 99000°s extended operation instructions.
They are located over the address range 0040, to 007E,.

The last reserved memory area is used to store a vector for the non-
maskable interrupt service routine. This vector requires just two word loca-
tions of memory and they are located at FFFC,4 and FFFE .

The address space from 0080, through FFFB, is general use area and
can be used for program storage or data storage memory. Moreover, any part
of the address space of the 99000’s memory system can be implemented
with ROM or RAM devices.

5.6 MEMORY BUS STATUS CODES
AND MEMORY CONTROL SIGNALS

Let us now look at the signals that are used to demultiplex the ad(jres§/data
bus and control the timing of read/write data transfers. Earlier we indicated
that the 99000 outputs bus status codes to identify which type of bus cycle
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is taking place. During all bus operations to memory, the memory enable
signal MEM is at logic 0. At the same time, a bus status code is output on
BST, through BST,. It identifies which of the different types of memory
accesses is taking place over the address/data bus.

A table of bus status codes is shown in Fig. 5.6. Here the various
memory bus status codes are highlighted. For instance, whenever an instruc-
tion is being fetched from memory over the data bus, the instruction acquisi-
tion (1AQ) code is output on the status bus. If the instruction is a two-word
instruction or is followed by immediate data, the read of the second word
from memory is accompanied by the immediate operand (I0P) code on the
status bus.

MEM BST, BST, BST, Mnemonic Name

[+] 0 1] 0 SOPL Source operand with MPILCK
] 0 0 1 SopP Source operand

] 0 1 0 lop Immediate operand

] 0 1 1 1AQ Instruction acquisition

0 1 0 0 poe Destination operand

0 1 o} 1 INTA Interrupt acknowledge

0 1 1 ] WS Workspace

0 1 1 1 GM General memory

1 0 0 [} AUMSL ALU or macrostore with MPILCK|
1 0 ] 1 AUMS ALU or macrostore

1 0 1 0 RESET Reset

1 0 1 1 10 Input/output

1 1 0 0 wpP Workspace pointer

1 1 0 1 ST Status register

1 1 1 0 MID Macroinstruction detect

1 1 1 1 HOLDA Hold acknowledge

Figure 5.6 Memory bus status codes.

On the other hand, if an instruction requires reading source and destina-
tion operands from general memory, the corresponding memory cycles are
identified by the source operand transfer (SOP) and destination operand
transfer (DOP) bus status codes, respectively.

Source and destination operands can be read from workspace registers
rather than locations in general memory. In this case, the workspace transfer
(WS) code is output during each read cycle instead of SOP and DOP codes.

The other four signals that control the interface between the 99000
microprocessor and memory are R/W, ALATCH, WE, and RD. ALATCH
indicates whether the bus is set up for operation as an address bus or data
bus. Logic 0 on ALATCH indicates that the bus is carrying address informa-
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Sec. 5.7
tion and 1 indicates data. During write operations, R/W and WE switch to
logic 0 to indicate to the memory system that the bus is in the output stéte
and valid data are on the bus. R/W provides an early write signal for use with
high-speed memory subsystems. On the other hand, when an instruction or
data are read from memory, RD switches to logic 0. It tells the memory sys-
tem that the bus is set up for reading of data and that the memory system
should put data from the addressed location onto the bus.

5.7 READ CYCLE

CLKOUT

Now that we have introduced the memory interface of the 99000, let us con-
tinue by tracing the sequence of events that occur when an instruction or
data operand is read from memory. .
The sequence of signals that take place at the memory interfact_e dun.ng
a read operation is shown in Fig. 5.7. Notice that the read cycle begins with
the 0-to-1 transition of ALATCH. This indicates that a valid address is on the
system bus. At the same time, MEM switches to the 0 level, indicating that a
memory cycle is in progress and an appropriate bus status code (IAQ, ‘IOP,
SOP, DOP, or WS) is output on BST, through BST;. On the 1-to-0 transition

|

A/Dg-AD,,, D,4/PSEL x Address valid ; u \
Data
read
ALATCH , \ "
BST,-BST, x X
MEM \ ’
R/W / \
RD \ /

Figure 5.7 Read bus cycle timing.
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of ALATCH, the address must be latched into external circuitry and applied
to the memory subsystem. Notice that the address actually remains valid
past the falling edge of ALATCH. This assures that the correct value is
latched up.

As the 99000 switches RD to logic 0, it signals the memory subsystem
to put data onto the bus. On the 1-to-0 transition of CLKOUT that follows,
the 99000 reads the data off the bus.

Notice that the 99000 has the ability to perform a memory operation
in just one CLKOUT cycle. Earlier we indicated that CLKOUT was identical
to the machine cycle of the 99000. Therefore, at 6 MHz (24 MHz crystal) its
memory bus cycle time is 167 ns,

5.8 WRITE CYCLE

The signals and timing involved in the memory write cycle of the 99000’s
microcomputer system are similar to those found in the read cycle. Looking
at Fig. 5.8, we find that the write cycle also begins with the 0-to-1 transi-
tion of ALATCH. The address and status code are output onto their corre-
sponding buses and MEM is pulled to the 0 logic level, indicating that a

CLKOUT f \

A/Dg-A/Dy,, Dy (PSEL x Address vaf:dL Write data valid x
ALATCH n f
BST,-BST, x X

RAW \ /

|

Figure 5.8 Write bus cycle timing.
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ory cycle is in progress. However, this time R/W is switched to logic 0
:;egv;y anyearly sig:al tgl:at a write cycle has just started. The address must
again be latched in external circuitry as ALATCH returns to the 0 level.

The 99000 outputs the data that are to be written into the st:oragt_a loca-
tion onto the data bus. This time KD remains at logic 1 a.ndWE is switched
to logic 0. In this way, the memory system is signn}ed that valid data are on
the bus and that it should complete the write operation.

5.9 SLOW MEMORY INTERFACE

We just showed that the standard bus cycle of the 99000 takes ]ugt 167 ns to
be completed. For the 99000 microcomputer system to operate in this way,
its memory subsystem must be designed with very fast sta.t?c memory
devices. However, the 99000’s memory interface also has the ability to \f'ork
with slower memories. This is achieved through the use of the READY signal
that has been added to the interface as shown in Fig. 5.9.

ALATCH

A/Dy-A/D,y, D,/PSEL

MEM

BST,-BST, Memory
2o subsystem

&
&

R/W

READY

Figure 5.9 Slow memory interface.

READY is used to insert multiple wait states into the memory bus
cycle. It gets tested each machine cycle of a memory operation. If th_e
READY input is logic 1 when tested by the 99000, the memory cycle is
completed. On the other hand, if it is logic 0, the read or write of data does
not occur. Instead, READY is sampled in each machine state that follows
and the memory cycle is extended until READY returns to logic 1. This per-
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mits creation of a memory cycle in which the memory system provides the
READY signal to indicate when read or write cycles are to be completed.

For instance, if the bus cycle is extended by one machine cycle, the
new bus cycle duration is

teyL: = 2tcy
= 2(167 ns)
=334 ns
This longer bus cycle permits the 99000 to work with a memory subsystem
designed with slower memory devices such as dynamic RAMs.
Example 5.2

What is the memory cycle time of a memory system for the 99000 that has two
wait states inserted with the READY signal? Assume that the 99000 is operating at
6 MHz (24 MHz crystal).

Solution: When two wait states are inserted, the memory bus cycle takes three
machine states to complete.

tcyLz = 3tcyr = 3(167 ns)
= 501 ns

5.10 DEMULTIPLEXING THE 99000'S SYSTEM BUS

The system bus of the 99000 is designed to support a very short duration
memory bus cycle. Earlier we mentioned that a bus cycle without wait states
takes just 167 ns. This short bus cycle permits the use of fast memory
devices, such as 35.ns-access-time static RAM, in the 99000’s memory sub-
system. This is typically done only for applications that require very high
performance operation. The result of this short bus cycle is a much higher
bus bandwidth than for the other 16-bit microprocessors that are available,

Remember that the address and data buses of the 99000 are multi-
plexed and must be demultiplexed with external circuitry. Because of the
high-speed bus operation, the multiplexed address/data bus signals cannot be
distributed throughout the microcomputer system. The delays experienced
in distributing them would result in incorrect bus operation. Instead, they
must be demultiplexed with circuitry placed immediately next to the
address/data pins.

Figure 5.10 shows how the bus in a 99000 microcomputer system can
be demultiplexed. Here we find that two T4ALS573 transparent octal
latches are used to latch addresses output on the A, through A, lines. When
ALATCH switches to logic 1, the latches are enabled. Since they are trans-
parent latches, a valid address is available at their outputs Ay, through A,p,
12 ns after the address on A, through A;; becomes valid. This address is
latched into the outputs as ALATCH returns to logic 0.

3
Sec, 5,10 Demultiplexing the 99000's System Bus 13

Demultiplexed system bus

ALATCH l

G P
74ALS573 B A, PSEL,
@
99000 oF

G
A/Dg-A/D,y 74ALS573 Memory and 1/0
(2) subsystems
PSEL/D,g 5

]

WE +5V
G
74ALS573 Bl
@
OE
DEN
RW {> R/W
cLkouT -—-|>(’L SYSGLK
e ———-|>(> SYSMEM

Figure 5.10 Demultiplexing the system address/data bus.

The data bus buffer part of the system bus demultipie}sing .circuit must
also be located physically close to the 99000 device. Notice in !?lg. 5.10.that
two T4ALS573 devices are also used here. The upper two devices provu;le a
data path for writing to memory. When the 99000 switches WE 'to logic 0
during the data-transfer part of the write bus cycle, the data that 1t.has out-
put on D, through D;; are passed to the buffered system data bus lines Dyp

D and the memory subsystem.
thmug; t.}llse}3 other hand, dging read bus cycles, the 99000 accesses data
stored in memory through the lower two 74ALS573 devices. The outputs of
these devices are enabled by DEN to put the data at the outputs of memory
onto data bus lines D, through D ;. )

Three buffered control signals complete the demultiplexed system bus.
They are buffered read/write (R/W), system clock (SYSCLK), and system
memory (SYSMEM).
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Bank 2
Bank 3

5.11 EPROM/STATIC RAM MEMORY SUBSYSTEM

Dq-D1s
DG‘U‘E
D,

The circuit illustrated in Fig. 5.11 shows a static memory subsystem that can
be used for program and data storage in a 99000 microcomputer system.
Looking at the memory array of the subsystem, we find that it contains two
banks of TMS2516 EPROMs. These banks are labeled BANK 0 and BANK 1
in the circuit diagram. Each bank is formed with two 16K-bit EPROMs.
They are organized 2K by 8 and connect together to give a total bank
capacity of 2K 16-bit words. In this way, we get a total of 4K 16-bit words
of EPROM for program storage memory.

The other two banks of the memory array contain static RAMs. Each
bank contains four 1K by 4-bit RAM ICs connected to give 16-bit storage
locations. This gives a total bank storage capacity of 1K 16-bit words and a
total data storage memory capacity of 2K 16-bit words.

The address input on lines A, through A, determines whether program
or data memory is selected and the actual location that is to be accessed.
Notice that bits A, through A, of the address are directly applied to all
memory devices in parallel. It is this part of the address that selects the
actual storage location to be accessed. At the same time, bits A, and A,
of the address are applied to inputs of a 7418138 2-line-to-4-line decoder.
Based on the binary code at these lines, one of the bank outputs, BANK,
through BANKj, is switched to logic 0. This 0 logic level is applied to the
CS or S input of one of the banks of EPROMs or RAMs and enables it for
operation.

When data are to be read from EPROM or RAM, the address selects the
appropriate bank and storage location. In turn, the enabled memory devices
output a word of data at Dy through D,.

When accessing the RAM part of the memory subsystem, WE signals
whether data are to be read from or written into the addressed storage
location. For a write operation, data are applied to the data input of the
TMS2114 RAMs. When WE switches to logic 0, the data on the bus are
written into the addressed locations of the enabled bank of RAMs.

Bank 0

Bank 1
RAM 3
RAM 7
Dq-D;

"1 A-As
F—{cs 2114
S

=] Ag-Aq
F—{cs 2114
= rW

Dy-Dy
RAM 6
D4-Ds

et
a1 Aq-Ag

2516
D,-D,
EPROM 3
2616
0,-0;
RAM 2

EPROM 1
Ag-Aj

Ag-Arg
=3

—1CS 2114
R

cs
1 A,-Ay
=G5 2n4
[3

A,

ke

2114
D
2114

o
RAM 5

R
| Ag-Ag

RAM 1
] A,-A,

o]

55

RAM 0
2118
Dy-Dy

RAM 4
2114

EPROM 2
2516
Dy-D,

p—a{ A <A

— AU A‘
cs
R.
Lda,-a,

Ag-Ay,

Data bus
transceiver

“

cs
w
Figure 5.11 4K ROM/2K RAM 16-bit memory subsystem.
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5.12 EXTENDING THE ADDRESS SPACE OF THE 99000

Today, microcomputer systems are being employed in more complex appli-
cations and with increased use of high-level languages such as BASIC and
PASCAL. Both of these conditions provide requirements for support of a
large memory subsystem. At the same time, the dramatic decrease in the cost
= = Jis of semiconductor memory has made the use of large memory subsystems
more practical.

§ The 99000 with its 15-bit address bus is limited to direct addressing of

a 32K-word (64K-byte) memory subsystem. This is called its logical address

Address
latch
G

74ALS573
2)

A/Dy-AD,,,
PSEL/D,
ALATCH

[

R

Di
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space. As indicated earlier, the PSEL signal can be used as an additional
address bit to extend the logical address space of the 99000 in a paged mode
to two 64K-byte pages, or 128K bytes.

Figure 5.12 shows how the extended address feature of the 99000 can
be used to implement a 64K-word paged memory subsystem. Notice that the
memory subsystem is formed from two separate 32K-word memory banks.
These sections are called PAGE 0 and PAGE 1.

A/Dy-A/D,q Ag-Ar
PSEL/Dyg PSy
Dg-Dig
ALATCH RW Page 0
RD 32K x 16
Be WE
99000 Bus
demultiplexer
and interface
Ag-Ayq
PsS,
D,-D,.
R/W R/W Page 1
RD RD 32K x16
WE WE
READY

Figure 5.12 64K-word paged memory subsystem,

Remember that status bit STg can be used as a sixteenth address bit.
The logic level of ST is complemented and multiplexed out at pin 31 of the
99000’s package. This signal, PSEL, together with A, through A,,, gives a
16-bit external address. This extended address permits the 99000 to access
two independent 32K-word pages of memory, for a total of 64K words.

In the circuit diagram, PSEL is passed to the memory system together
with A, through A,,. However, it is applied to page select inputs PS, and
PS,. For instance, when status bit STy is set to logic 1, the PSEL output is
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logic 0 and PAGE 0 of the memory system is selected. Therefore, only the
memory devices in PAGE 0 of the memory subsystem are enabled for opera-
tion and data are read from or written into the addressed storage location.

Through software the value of STy can be changed to logic 0. Now
PSEL is logic 1 and storage locations on PAGE 1 of the memory subsystem
are accessed instead of those on PAGE 0.

A number of different methods can be used to extend further the size
of the 99000’s address space. For instance, additional external decoding
circuitry could be included to identify memory bus status codes that repre-
sent instruction acquisitions from those for data acquisitions. The outputs of
this decoder are signals that indicate when accesses of the program storage
memory and data storage memory occur. These signals can be used to enable
an independent 128K-byte program storage memory segment and an inde-
pendent 128K-byte data storage memory segment. In this way, the logical
address space has been increased in a segmented fashion to 256K bytes.

Another way to expand the memory system of the 99000 is to use out-
put ports as enable signals for 64K-byte pages of memory. If this is done, an
output instruction must be executed to select one of a number of 64K-byte
pages of memory for operation. This is another way of extending memory in
a paged mode.

A technique known as overlaying is a fourth method of extending
memory. Using this technique, the memory system is extended by use of a
mass storage device such as a floppy disk. That is, the 64K-byte address
space of the system is divided into segments called overlays, These overlay
areas are not dedicated to one function; instead, they are loaded with
different programs and data, depending on which task the microcomputer is
performing. If the overlay contains data that are modified during program
execution, it must be updated on the mass storage media at completion of
the task. The disadvantage of this method lies in its degradation of system
performance due to the overhead time required for loading from disk and
returning modified data back to the disk.

A fifth choice is to extend the address reach of the 99000 micropro-
cessor in a mapped fashion. This can be done by adding a memory mapper
device to the memory subsystem interface.

Figure 5.13 illustrates the concept behind memory mapping. Notice
that 11 of the 99000’s 15 address lines are passed directly to the memory
subsystem. The other four address lines are used as inputs to the mapper
circuit. Here the 4-bit code gets translated into a 12-bit address extension.
This address extension is output by the memory mapper and combined with
the other 11 address bits to give an extended 23-bit address at the memory
subsystem. The extended address is known as a physical address and it per-
mits a physical memory system address space as large as 8 megabytes.
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Ay 2 are also applied to the EDAC section. During a write operation, the data

Addrow biiy word output by the 99000 on the data bus is first processed by the EDAC.

15 bits gt 11 bits 23bits The EDAC generates and outputs a check code. This check word is stored

together with the data word in memory. In the circuit diagram, we have
shown that the 16-bit data bus of the 99000 has been extended to 22 bits.
This corresponds to the addition of a 6-bit check word.

In this way, we see that the use of EDAC does require some memory
overhead. In fact, if 64K dynamic RAMs are used, six more ICs must be
added to the 64K-word subsystem to extend its word length from 16 bits
to 22 bits.

When data are read back from memory, the data words are again
checked by the EDAC circuit. The new check word that is generated is com-
pared to the check word read from memory. If a match occurs, the EDAC
operation is transparent to the microprocessor. That is, the read cycle is con-
tinued through to completion.

However, if a single- or double-bit error is detected, the EDAC unit
signals the microprocessor of this condition. For a single-bit error, the micro-

ALATCH

Memory s
mapper | 12 bits
Memory

CNTRL subsystem

PSEL f

Data bus
12 bits

Bus 7
> transceiver < 16 bins >
Data bus

|

RAW

ALATCH l

Figure 5.13 Memory mapped address reach expansion.

Address bus (16 bits)
A/Dy-A/D,, Address

otk latch
PSEL/Dq

5.13 99000 MEMORY SUBSYSTEM
WITH ERROR DETECTION AND CORRECTION

With the use of 64K-byte and larger memory subsystems becoming popular
in microcomputer systems, the need has arisen for automatic error detection
and correction capabilities. For instance, the occurrence of a single-bit

; 4 99000 e
i hardware error in a large dynamic RAM subsystem could lock up the micro- - 22 bits X B4 K
s computer system in an inoperable state. Contal SRTRL A
Both hard and soft single-bit errors can be detected and corrected by corrector
adding a small amount of circuitry to the memory subsystem. Figure 5.14
shows such a configuration. Notice that an error detector and corrector
(EDAC) section has been included in the memory interface. This results in
unproved accuracy for memory data transfers and increased overall system ?Iaéab?t\;; R s b T
reliability. [ranl::\ver
The ability to perform error detection and correction has become more I
important with the widespread use of high-capacity dynamic RAM ICs such
as 64K-bit devices. This is because a small number of soft errors are being 1
experienced due to alpha particles. These soft errors are typically of the R

3

single-bit type.
Looking at Fig. 5.14, we see that data read from or written to memory Figure 5.14 Memory subsystem with error detection and correction.




140 Memory Interface of the 99000 Chap.5

processor can set control signals such that the EDAC circuit automatically
corrects the error. Then the corrected data are put on the data bus and read
by the microprocessor.

Single-bit errors can be automatically corrected by the EDAC, but not
multibit errors. Instead, the EDAC sends another flag signal to the micro-
processor to identify the occurrence of the multibit error. In this way, the
system can provide some form of system response to the incorrectly read
data.

5.14 CACHE MEMORY FOR THE 99000 SYSTEM

Memory subsystems that are made with high capacity but relatively slow
dynamic RAMs, such as the TMS4164, degrade the performance of the
99000 microcomputer system. Even though these dynamic RAMs are avail-
able with access times as short as 120 ns, they are still too slow to work in a
99000 system that is running without wait states. If .wait states are intro-
duced, the microprocessor is slowed down to work with the memory, but
overall system performance is decreased.

A system with cache memory such as that shown in Fig. 5.15 provides
a means for improving overall microcomputer system performance even
when slow memory devices are in use. In a system with cache, a second,
smaller but very fast memory section is added for use together with the
large, slower main memory section. This small memory section, known as
the cache, typically contains several thousand words of RAM and is made
with high-speed static RAMs rather than dynamic RAMs. For this reason,
cache can be accessed without wait states, whereas accesses of main memory
require wait states.

The concept behind cache is that it can store data used frequently.
When an address of a storage location to be read is put on the system bus,
the cache tag circuit determines whether or not the data to be accessed
reside in both main memory and the cache memory. If they do, the memory
cycle is considered a “hit” condition. In turn, the cache tag signals the cache
controller that a hit has occurred. The cache controller inhibits access of the
main memory and initiates access of the corresponding data in cache.

In this way, we see that the use of cache reduces the number of accesses
made from the slower main memory. This results in a level of system per-
formance that approaches that of a system operating with main memory that
requires no wait states.

If the address output to the main memory subsystem does not corre-
spond to data that are already cached, the cache tag signals this condition to
the controller. This represents a “miss” and the cache controller causes the
data to be read from main system memory instead of from cache. For a read
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Figure 5.15 99000 memory subsystem with cache.

operation of an address that represents data not in cache, the data are first
read from main memory and then written into a corresponding location in
cache. Notice that all data that reside in cache also reside in main memory.

Two types of write operation are also performed. If the address to be
written into represents data that are already cached, the write is performed
to storage locations in both cache and main memory. This feature of a cache
is known as automatic write-through. On the other hand, if the write is to a
location that is not yet cached, a write is initiated such that just main
memory is updated.

ASSIGNMENT

Section 5.2

1. What is the function of the address bus relative to memory operation?
2. What is the function of the data bus relative to memory operation?
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Section 5.3
3. Which bit of the 99000’s address is maintained internal for byte selection?
4. How many unique byte add can be d by the 99000’s extended address
bus?
Section 5.4

5. Which data formats can be directly processed by the 99000?

6. How would the data >12345678 be stored starting at address > A000 in memory?

7. Over which data bus lines would data byte >FF be carried if it is written to address
>B001 in memory?

Section 5.5

8. What part of the first page of the 99000’s memory address space should be used for
program storage?

9. How many bytes from the first page of the 99000’s memory are reserved for storage
of interrupt and extended operation vectors?

Section 5.6

10. What bus status code is output by the 99000 when it reads an interrupt vector from
memory?

11. Give an overview of the function of each of the signals that follow relative to
memory operation: ALATCH, WE, and RD.

Section 5.7

12. Give five examples of operations that would require the 99000 to perform a read
operation from memory.

13. Describe the sequence of bus activity that would occur as the 99000 reads a long-
word operand from memory.

Section 5.8

14. Describe the sequence of bus activity that would occur as the 99000 writes a byte
operand into memory.

Section 5.9
15. What function does the READY signal serve in the 99000 microcomputer system?

16. If the 99000 is run by a 20-MHz crystal, what is the duration of each bus cycle if
READY is fixed at the 1 logic level?
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Section 5.10

17. Explain the operation of the circuit shown in Fig. 5.10 as a word-wide write cycle is
performed to the memory subsystem.

Section 5.11

18. If the address on the bus shown in Fig. 5.11 is >10FE, which bank of memory de-
vices is enabled and which address in the bank is accessed?

Section 5.12

19. Assume that the 99000 system of Fig. 5.12 is currently accessing PAGE 0 of
memory. Write a sequence of instructions that will modify the status such that PAGE
1 can be accessed.

20. Name two methods of expanding the address reach of the 99000 beyond 128K
bytes.

21. Draw a simple logic circuit that can decode the bus status to produce a select signal
for enabling program or data memory.

22. In the circuit of Fig. 5.13, the address at the outputs of the address latch is > ABCD.
If the 12-bit output produced by the memory mapper is >F00, what location is
accessed in the memory subsystem?

Section 5.13

23. What is the need for EDAC in a microcomputer system?
24. Give an overview of how an EDAC supports single-bit error detection and correction.

Section 5.14

25. Why would cache memory be used in a 99000 microcomputer system?
26. List all the differences between cache and main memory.
27. What is meant by “hit condition” when discussing the operation of a cache?
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6.1 INTRODUCTION

In Chapter 5 we studied the memory interface of the 99000. Here we con-
tinue with another important interface, the input/output interface. The
following topics are covered in the chapter:

. Communications register unit

1/0O instructions

. The base address and I/O address space
. Bit-serial I/O operation and bus cycle

. External serial I/O interface circuitry

. Parallel I/O operation and bus cycle

. External parallel I/O interface circuitry
. Wait states in the I/O bus cycle

mqa:m.hm_wu

6.2 COMMUNICATIONS REGISTER UNIT

The communications register unit (CRU) is the main I/O interface of the
99000 microprocessor. Other popular 16-bit microprocessors do not have
an independent I/O interface such as that of the 99000. Because of this
CRU, the 99000 provides a very flexible I/O mechanism that has the ability
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to do single-bit or multibit I/O operations through a bit-serial I/O interface
and byte or word transfers through a parallel I/O interface.

Serial Interface Block Diagram

The serial 1/0 interface of the 99000 is illustrated in Fig. 6.1. Here we see
that the address bus A, through A,,, memory control signals ALATCH,
R/W, RD, and MEM, and bus status lines BST, through BST, are common to
both the memory and serial I/O interface. The address output on these lines
are used to select the I/O port for which data are input or output. Notice
that the I/O interface also contains three new signals: IN, OUT, and TOCLK,
Data are output in bit-serial form on the OUT line synchronously with clock
pulses at the [OCLK output. On the other hand, bit-serial data are input on
the IN line. This interface provides for easy control of single-bit I/O ports.

ALATCH
1/0
device 1
Ag-Ayg
RIW
RD Serial /0
input/output device 2
MEM interface
99000
BST,-BST, )
out
IN
[OCLK 10
device N

Figure 6.1 Serial input/output interface block diagram.

Parallel Interface Block Diagram

The parallel 1/0 interface, which is shown in Fig. 8.2, is similar to the serial
interface except that it uses the data bus line, D, through D ;, for input and
output of data instead of IN and OUT. Byte transfers take place over the
most significant eight bus lines. D, through D,, and words are carried over
the complete bus, D, through D,s. The parallel I/O capability provides for
easy interface to LST peripherals that operate over an 8-bit parallel bus.



146 Input/Output Interface of the 99000 Chap. 6
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device 1
Ag-Aw
= ice 2
R device
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99000 IOCLK inputioutput
7D interface
MEM
BST,-BST,
1’0
device N

Figure 6.2 Parallel input/output interface block diagram.

6.3 INPUT/OUTPUT INSTRUCTIONS

Five instructions are provided in the instruction set of the 99000 specifically
to perform input/output operations through the serial I/O interface. They
are listed together with a summary of their operation in Fig. 6.3.

Of these instructions, three are for single-bit 1/0 operations: the set bit
one (SBO), the set bit zero (SBZ), and test bit (TB). The first two, SBO and
SBZ, perform output operations and are used to set the logic level at a
specific output port to the 1 and 0 logic levels, respectively. The third in-
struction, TB, is used to input the logic level from an input port. The 0 or 1
level that is input is stored in the equal bit, ST,, of the status register.

Multibit serial I/0 operations are performed using the load communica-
tions register (LDCR) instruction and store communications register (STCR)
instruction. LDCR is used for multibit output operations and STCR for
multibit input operations. With these instructions, we can input from or out-
put to from 2 to 15 I/O ports at consecutive addresses. The number of bits
to be input or output are specified as a 4-bit count which is part of the
instruction.

As shown in Fig. 6.3, only the LDCR and STCR instructions are
applicable to the parallel I/O interface. In this case, the count specified with
the instruction determines whether a word or byte transfer is to take place
over the data bus instead of the number of bits to be input or output.

There are just four counts that are allowed for use with parallel I/O:
0010, 0011, 1010, and 1011, If the count specified with the instruction is
either 1010 or 1011, a word transfer occurs. On the other hand, for a byte
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Instruction Meaning Format Serial [/0 explanation Parallel 1/0 explanation

Set bit one SBO I Sets the 1/0 bit at the specified Naone
displacemant from the base
address to logic 1

Set bit zero SBZ 1 Sets the [/0 bit at the specified None
displacement from the base
address to logic 0

Test bit T8 [ Sets the equal bit of the status None
register equal to the logic level
at the 1/0 bit at the specified
displacement from the base

address
LDCR Load communication LDCR S,1 Loads the logic levels specified Outputs a word or
register in the instruction into the 2 to byte of data

16 consecutive 1/0 bits starting
with the bit lacated at the base

address
STCR Store communication STCR 5.1 Stores the logic levels at 2 to Inputs a word or
register 16 consecutive /O bits starting byte of data

with the bit located at the base
address into the storage location
specified in the instruction

Figure 6.3 Input/output instructions.

transfer to take place, the count must be either 0010 or 0011, In this way,
we see that logic 1 in the MSB location selects word transfers and 0 in this
position selects byte transfers.

Moreover, an autoincrement mode is selected for the I/O address when
0011 or 1011 is selected as the count. It is the logic 1 in the LSB of the
count that selects autoincrement mode of operation. When autoincrement
operation is selected, the address that points to the I/O port is automatically
incremented by 2 during execution of the instruction. In this way, it will
point to the next I/O port at completion of the current I/O operation.

6.4 THE BASE ADDRESS AND 1/0 ADDRESS SPACE

The port accessed for input or output of data is selected by an I/O address
that is output on the system address bus A, through A,4. This 15-bit address
provides 2'S = 32,768 (32K) independent I/O addresses. The I/O ports asso-
ciated with these addresses can be bit wide, byte wide, or word wide.

Figure 6.4 shows the I/O address space of the 99000. This I/O address
space is totally independent of the system’s memory address space. Inde-
pendence is achieved through the use of the bus status code. During the com-
plete I/O bus cycle, the MEM output of the 99000 is logic 1. This indicates
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00005y e

Serial CRU
address space

TFFE,

8000,
Parallel CRU
address space

FFFE,g Figure 6.4 I/O address space.

that a memory operation is not in progress. The rest of the bus status lines
are BST,BST,BST; = 011 and indicate that a I/O operation is in progress.
These signals must be used to enable external circuitry to decode the address
output on the system bus.

Looking at Fig. 6.4, we see that the MSB of the I/O address indicates
whether a serial or parallel operation is in progress. Serial I/O operations
occur when A, is logic 0 and parallel operations occur when A, is logic 1. In
this way, we find that the lower 16,384 (16K) of addresses, 0000, 4 through
TFFEg, in the I/O address space are dedicated to serial accessible I/0 ports
and the higher 16K of addresses, 80004 through FFFE, to paraile! ge-
cessible I/0 ports.

1/O Base Address

During execution of an 1/0 instruction, register R,, of the current work-
space must contain an I/O address pointer. This is known as the base address
and must be loaded under software control prior to execution of the I/O
instruction. The 16-bit value loaded into Ry, is called the I/O software ad-
dress. It differs in value from the address output on A, through A, during
an I/O bus cycle. This is because the LSB A, is not output or used to deter-
mine which I/O port is to be accessed. The value output on the bus is known
as the 1/O hardware address. It is the actual address of the 1/O port to be
accessed.

Figure 6.5(a) shows the relationship between the value of the software
and hardware addresses. Here we see that the software address is equal to the
hardware address shifted left by 1 bit. For this reason, the value of the soft-
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Figure 6.5(a) Software and hardware address words; (b) generating
the software address for a single-bit I/O operation.

ware address is twice that of the hardware address. For example, if the hard-
ware address is to be 1000,, = 001000000000000,, R;, must be loaded
with 2000, = 0010000000000000,.

Base Address for a Single-Bit 1/0 Instruction

In the case of the single-bit serial I/O instructions, the base address identifies
the I/O port for which the input or output operation is to occur. As shown
in Fig. 6.3, an 8-bit signed displacement labeled I can be defined as part of
the SBO, SBZ, or TB instruction. This allows the port to which the /O
operation takes place to be offset by +127 to —128 from the port pointed
to by the base address. The effective address of the I/O port to be accessed
is obtained by adding the displacement to the base address in R,;. This is
done as shown in Fig. 6.5(b).

For example, let the displacement equal 01111111, = 7F,¢ (+127)
and the base address equal 2000, = 0010000000000000,. Adding, we ob-
tain an effective software address of 0010000011111110, = 20FE,,. The
corresponding hardware address is 001000001111111, = 107F 4.
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Example 6.1

What is the displaced software and hardware address if the displacement specified
with a TB instruction is to be —127 and register R, holds 2000,5? The TB instruc-
tion always contains the 2’s complement of the displacement.

Solution:  Expressing the displacement in binary form and converting to a signed
number gives

—127 = 11111110,
The sign bit is extended for the displacement to give the 16-bit word
1111111111111110,
The base address in binary form is
2000, = 0010000000000000,
Adding the displacement to the base address, we get
0010000000000000, + 1111111111111110, = 0001111111111110,
= 1FFE
This is the software address and its equivalent hardware address is
000111111111111, = OFFF,¢

Base Address for a Multibit 1/0 Instruction

For multibit I/O instructions, the base address in R,, acts differently de-
pending on whether a serial or parallel data transfer is taking place. For
parallel transfers, its equivalent hardware address points to the byte-wide or
word-wide I/O port.

On the other hand, for multibit serial transfers, the base address points
to the port for which the first bit of data will be input or output. In this
case, the address is automatically incremented after each bit is input or out-
put such that it always points to the next consecutive 1/0 port.

6.5 BIT-SERIAL I/0 OPERATION AND BUS CYCLE

Now that we have introduced the communications register unit interface,
I/O instructions, and 1/O address space, let us continue by tracing the se-
quence of events that occur during the single-bit and multibit I/0 bus cycles.

Single-Bit 1/0 Operation
Figure 6.6 shows the timing sequence for a single-bit output bus cycle such

as those performed by the SBO or SBZ instructions. This diagram represents
an I/O bus cycle with no wait states and has a duration of two CLKOUT
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cycles. The sequence begins with ALATCH switching to logic 1,‘MEM
switching to logic 1, and a I/O bus status code (011) output_ on the BST
lines. Next, the address of the 1/O port that is to be accessed is put on bus

st machine 2nd machine
I cycle cycle

ALATCH ‘
i

BST,-BST,

ouT

J Valid data output

L

IOCLK

RD

I
J
Jl_

Figure 6.6 Single-bit serial output bus cycle timing.
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lines A, through A;,. As ALATCH switches back to logic 0, this address
must be latched into the external system bus demultiplexing circuitry.

After this, the 99000 sets OUT to the logic level that is to be output.
This output remains valid throughout the rest of this and the next CLKOUT
cycle. IOCLK remains at the 1 logic level until the second CLKOUT cycle of

2nd machine
cycle

1 1st machine ‘
’ cycle T

CLKOUT ’ \ ’ \

Vand
-A _._____.........__....__{
AoAia address

ALATCH

BST,-BST,

Valid
data input

jL e & I e
]

Figure 6.7 Single-bit serial input bus cycle timing.
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the output bus cycle. Then it is switched to logic 0. This pulse should be
used to load the data at OUT synchronously into the output port.

The single-bit serial input cycle that occurs during the execution of the
TB instruction is similar to that just described for the SBO or SBZ instruc-
tion. Figure 6.7 is a timing diagram for this type of I/O bus cycle. Notice
that this time, data are read in from the input port on IN. The 99000
samples the logic level at IN synchronously with the 1-to-0 edge of the
second CLKOUT pulse. The RD signal is logic 0 at this time and can be used
together with the 10 bus status code to enable the 0 or 1 logic level from the
port selected by the address onto the IN line. The logic level read at IN is
loaded into the equal bit of the status register.

Multibit Serial 1/0 Operation

The timing diagrams of the multibit serial input and output operations per-
formed by the STCR and LDCR instructions, respectively, are similar to
those given in Figs. 6.6 and 6.7. However, the bus cycle repeats for each bit
of data that is to be input or output. During the execution of these instruc-
tions, one bit of data is output every other clock cycle.

6.6 EXTERNAL SERIAL I/O INTERFACE CIRCUITRY

Let us now look at the circuitry that is required external to the 99000 to im-
plement input and output ports when using the serial 1/O interface.

64 Input Serial 1/0 Interface

The diagram in Fig. 6.8 shows how eight 74LS251 8-line-to-1-line multi-
plexer ICs can be used to implement a 64-input serial I/0 interface. Notice
that each device forms an 8-bit input port. These ports are labeled PORT 0
through PORT 7. The eight devices provide 64 independent input lines. They
are labeled I, through Is;. On the other hand, the OUT lines of the eight
ports are all tied in parallel and supplied to the IN input of the 99000.

The 99000 selects data from the appropriate input line with the I)O
address it outputs on A,y through A,,1,. This is the demultiplexed system
address bus. Bit Ay, of this address is logic 0 during all serial I/O operations.
For this reason, it is applied to the G, 5 and G,g inputs of the 7415138 /O
address decoder. At the same time, the signal TO is inverted and applied to
the G, input of the decoder. This input is always 0 when an 1/O address is on
the bus. These signal levels enable the decoder for operation,

Address lines A,1,, A,r,, and A;p, apply a 3-bit code to the CBA inputs
of the address decoder. When the decoder is enabled, the output, 0 through
7, corresponding to this 3-bit input code is switched to logic 0. Outputs 0
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Bit addressable
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] 7418251 | .
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Figure 6.8 64 bit-addressable input ports.

through 7 are used as strobe inputs for the 7415251 devices for input ports
0 through 7, respectively. In this way, one of the eight input multiplexers is
selected for operation.

For example, let us assume that address bits A1, through A, are equal
to 001. This makes output 1 of the decoder switch to logic 0. It is applied to
the § input of the PORT 1 multiplexer and enables it for operation.
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Three other address lines, A;;L, AjaL, and A4, are applied in parallel
to the C, B, and A inputs, respectively, of all 74L8251 port multiplexers.
The code on these lines selects data from one of the eight inputs of the en-
abled multiplexer and passes it out onto the IN line. For instance, assuming
that the PORT 1 multiplexer has been selected and that A, Aj3p A, =
111, the logic level at input I,; is passed to IN for input to the 99000.

Example 6.2

The 1/O address output by the 99000 to the circuit shown in Fig. 6.8 is 7000,s.
From which input line is data multiplexed to IN?

Solution:  Let us begin by expressing the address in binary form. This gives
7000, = 011100000000000,

‘The MSB of the address Agl, is logic 0. This identifies that a serial I/O opera-
tion is in progress and together with TO equal to logic O enables the 74LS138 ad-
dress decoder.

AoL =0  enables serial I/O address decoder

10=0
The next 3 bits, A; LA, AsL, equal 111 and are applied to the CBA inputs of

the decoder. This code causes output 7 to switch to logic 0 and enables the PORT 7
multiplexer for operation.

ALALAL =111
7=0 enables PORT 7 multiplexer

The three LSBs of the address, A2, A13LA1s1, equal 000. This is applied to
all multiplexers in parallel; however, just the PORT 7 multiplexer is enabled.
Therefore, the logic level at input Iss is multiplexed onto IN for return to the
99000.

64 Outpurt Serial 1/O Interface

A circuit that provides 64 bit-addressable output ports from the serial 1/O
interface is shown in Fig. 6.9. Here we find that eight 74LS259 8-bit ad-
dressable latch ICs are used to produce eight output ports. These ports are
labeled PORT 0 through PORT 7. The individual output lines of these ports
are labeled Oy through Og;.

Data output on OUT are passed to the Dyy input of all ports in parallel.
As for the input circuit of Fig. 6.8, the demultiplexed system address output
on lines A,g, through A4, selects the port to which data are to be output.
During serial 1/O operations, A,, provides logic 0 at G, 4 and G;p of the
74LS138 I/O address decoder. Also, TO and TOCLK are gated together to
supply logic 1 at the G, input of the decoder. These signals enable it for
operation.
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Figure 6.9 64 bit-addressable output ports.

The code at address lines A,r, through A;j, identifies the port to be
enabled. But this time IOCLK is used to generate the G, enable input of the
decoder. Therefore, the output selected by the code A,LA;LA;L switches
to logic 0 during the pulse at [OCLK.

At the same time, bits A1, through A4, of the address are input to
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all 74LS259 devices in parallel. This code selects the output line on the en-
abled output port at which data are to be latched. In this way, the logic level
output on OUT is latched at the output selected by AjaAysp AjaL-

Example 6.3

The address output by the 98000 to the circuit shown in Fig. 6.9 during execution
of a SBO instruction is 0007 ;. Which output is set to logic 1?

Solution: We begin by converting the address to binary form. This gives
0007, = 000000000000111,

The logic 0 at Agy, is one enable input to the address decoder and when both 0
and TOCLK are equal to 0, the other enable input is supplied. }

Ao, =0  enable inputs to address decoder
0=0
[OCLK =0

A;LA;LAsL, = 000 identifies output PORT 0 and when TOCLK switches to its
active logic level, the 0 output of the decoder switches to logic 0. This enables
PORTO.

AiLA;LA;, =000, JOCLK=0 enables PORT 0
AnLABLA KL = 111 selects output O, at PORT 0.
ApLAiLAL =111  selects output O,

Logic 1 is output on OUT by the 99000; therefore, output O, is set to logic 1
synchronously with the pulse at IOCLK.

6.7 PARALLEL 1/0O OPERATION AND BUS CYCLE

Looking at Fig. 6.10, we find that the sequence of events that take place
during a perallel output bus cycle are similar to those in a single-bit-serial
output bus cycle. Just like for the single-bit output cycle, at the beginning
of the first clock cycle, ALATCH switches from 0 to 1, MEM switches to
logic 1, R/W switches to logic 0, an IO bus status code is output on BST,
through BST,, and the address of the I/O port is put on the address bus. The
address must be latched in external hardware synchronous with the 1-to-0
transition of ALATCH. However, in this case, the 1 at A, selects the parallel
mode of 1/O operation and sets up the 99000 internally for a parallel data
transfer over the data bus instead of a serial transfer at OUT.

During the second clock cycle, the data output operation is performed
as a parallel word transfer over bus lines D, through D,s or byte transfer
over D, through D,. Remember that the count specified with the LDCR or
STCR instruction determines whether a word or byte transfer takes place.
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Note that the output data become available after the address is removed in
machine cycle 1 and remains valid for the rest of the output bus cycle. Later
in the second machine cycle, data can be written into the output port syn-
chronously with a pulse at IOCLK.

If the autoincrement mode is selected with the count, the base address

1st machine ‘ 2nd machine |
cycle ‘ cycle |
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CLKOUT

5

Valid Valid

/Dy-
A/Dg-A/D,y, Dyg address data output

Aﬁgf_

ALATCH
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I0CLK
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Figure 6.10 Parallel output bus cycle timing.
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held in register R, is automatically incremented by 2 at the end of execu-
tion of the instruction. Looping on this instruction provides a simple means
for output of data to successive I/O ports at word addresses. An example is
the byte-wide registers within an LSI peripheral.

6.8 EXTERNAL PARALLEL /O INTERFACE CIRCUITRY

Now that we have described the parallel I/O bus cycle, let us demonstrate
with circuitry how its signals can be used to implement parallel input and
output ports.

Eight Byte-Wide Parallel Input Ports

Figure 6.11 shows how eight byte-wide input ports can be implemented in
the 99000 system using the parallel 1/O interface. This circuit contains one
7418244 three-state buffer for each port. If an I/O operation is not in prog-
ress, the outputs of these buffers are all in the high-Z state and isolated
from the data bus.

During a parallel STCR instruction, which is specified for a byte trans-
fer, the I/O address that is latched onto the system bus is applied to the in-
puts of the 7418138 I/O address decoder. For all parallel I/O operations, A,
equals 1. This supplies the G, enable input to the address decoder. Moreover,
during the complete parallel input bus cycle, the IO output of the bus status
decoder is logic 0 and the RD output of the 99000 is switched to logic 0.
This signals the input interface to put onto the bus the data that are to be
input. In our circuit, these two signals are applied to the G, and G,p in-
puts of the address decoder. Logic 0 at these two inputs together with logic
1 at G, enables the decoder for operation.

Since the decoder is enabled, its input code, A1, A3 Aja1,, Causes the
corresponding output to switch to logic 0. For example, if the input code is
000, the 0 output of the decoder switches to logic 0. These outputs are ap-
plied to the G, and G, inputs of the 74LS244 input buffers. The buffer that
corresponds to the decoder output that is logic 0 is enabled and the data
from its input lines are passed onto data bus lines D, through D,. The 99000
reads this byte of data off the bus and stores it in memory.

Example 6.4
If the I/O address output on the bus during a8 STCR instruction to the circuit shown
in Fig. 6.11 is 4007 ;¢, which port is enabled and which data byte is input?
Solution:  Let us begin by expressing the address in binary form. This gives
4007,, = 100000000000111,

The MSB of the address is A, = 1. Applying it to the G, input of the address de-
coder together with IO = 0 at G, 5 and RD = 0 at G;p enables the decoder for
operation.
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Ap=0G, =1 enables address decoder
iﬁ = G;A =0
RD= G;B =0

The three LSBs of the address are Aj1,A 31,A 41, = 111 and cause output 7 of the
decoder to switch to logic 0.

ApLALAwL =111 output 7=0

Ao,
G, 0
o———
7415138 1
. C—
AgL-Aa I Ap-A ) CBA Lo
address .
decoder .
7
Gaa Ga o
RD o———T T 4
Do G G ol
Do-Dy < 7415208 O
Port 0 LS
Byte addressable parailel
INpUt ports
Demultiplexed parallel = =
1/0 interface G G; |—oly
745244 0N
Port1 f——01,

G, G, 01y

7415244

0l

Port7 ——0lg

Figure 6.11 Eight byte-wide parallel input ports.
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This enables PORT 7 and data bytes Is¢ through Ig; are put on data bus lines Dy
through D,, respectively, for input to the 99000.

Eight Byte-Wide Parallel Output Ports

The circuit illustrated in Fig. 6.12 shows how eight byte-wide parallel output
ports can be constructed in the 99000 microcomputer system. Note that

AgL

G, 0 D
1
7415138 p—-Do—

Ao AvaL A -Aga CBA IO
address

decoder

N
Gaa G P > O Bit addressable paralel
O—T output ports
IOCLK

Do G 0,
7418373
0,0, [ > —o00,
Port 0 i
— 00

Demultiplexed parallel
/0 interface

G L o0
|»\ 7415373 __._009

/] Pont1 £
00,

1

= ——00%
> 7418373 |—o0 0y

Port7 g
——0 05

Figure 6.12 Eight byte-wide parallel output ports.
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each port is implemented with a 74LS378 octal latch. The individual output
lines are labeled O, through Og;.

For this circuit to operate, the 99000 outputs an /O address on Ay,
through A,41, due to the execution of a byte parallel LDCR instruction. It is
this address that selects the output port. Next the 99000 outputs the byte of
data on D, through D,. These data represent the logic levels to which the
lines of the output port are to be set and are applied to the inputs of all port
latches in parallel. When the data are valid, a pulse is output on TOCLK. This
pulse is used to enable the IO address decoder and causes the decoder output
selected by Aj;pp A3, AjaL to be pulsed to the 0 logic level. The pulse out-
put by the decoder is inverted and then used to load the corresponding port
latch from the data bus.

For example, the address 100000000000111, = 4007, causes PORT 7
to be loaded from D, through D, and the byte of data appears at outputs
Og¢ through Og;.

6.9 WAIT STATES IN THE 1/0 BUS CYCLE

For many of the slower LSI peripherals that are available today, the high-
speed data transfer rates of the 99000’s I/O interfaces may be too fast. For
this reason, the memory bus cycle wait-state logic we discussed earlier also
applies to its I/O interfaces. It can be used to introduce wait states into the
serial or parallel input/output bus cycle. In this way, the effective data trans-
fer rate can be slowed down,

The READY input is tested at a point in the 1/O bus cycle just before
the input or output data transfer takes place. For instance, if READY is at
logic 0, wait states are inserted into the I/O bus cycle. Assuming that
READY is switched back to 1 before the next clock cycle is completed, the
current 1/O bus cycle is extended by just one wait state. This increases the
time that it takes for a data transfer to be performed from the duration of
two clock cycles to three clock cycles.

ASSIGNMENT
Section 6.2

1. What is the function of the address bus relative to I/O operation?

2. Which line carries data during input operations performed through the serial I/0
interface?

3. Which line carries data during output operations performed through the serial I/0
interface?
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Section 6.3

4. Write instructions that will do the following:
(a) Load the base pointer register with the address >>6000.
(b) Set the seventh bit displaced in the positive direction relative to the current base

pointer to logic 0.
(c) Set the fifth bit displaced in the negative direction relative to the current base

pointer to logic 1.

5. Write a sequence of instructions that first tests the logic level at the input port at I/O
address >7000. The test should be repeated until the input line is read as logic 1.
When this happens, a branch is to be initiated to a subroutine called INPUT.

6. Write a subroutine called INPUT that will input the contents of the eight consecutive
input ports starting at 1/0 address >7002 and stores the byte at memory location
> A000. Then it acknowledges the input of data by generating a short-duration pulse
at the output port at IO address >7100.

Section 6.4
7. Does the instruction sequence

Ll R12,> A000
LDCR >2000,3

perform a 3-bit serial output operation, byte-wide parallel output operation, or word-
wide parallel output operation?

8. What are the software and hardware addresses for each of the output instructions in
problem 47

Section 6.5

9. What status code is output during the bus cycle of a TB instruction?

Section 6.6

10. A test bit instruction is executed to access the input port at address >1002 in Fig.
6.8. Which input is read, and where is its logic level stored?

11. Write an instruction sequence that when executed will generate a square-wave output
signal at output Og of the circuit shown in Fig. 6.9.

Section 6.7

12. What is the advantage of using parallel I/O operations over serial 1/0 operations when
the data to be input or output are either byte-wide or word-wide?
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Section 6.8

13. What base address must be used with a STCR instruction to input the contents of
PORT 1 in the circuit of Fig. 6.11?

14. Write a sequence of instructions that would input bytes of data from PORTS 0
through 7 and store them in consecutive memory locations starting at memory
address >>B000.

7

INTERRUPT INTERFACE
OF THE 99000

7.1 INTRODUCTION

In Chapter 6 we examined in detail the I/O interface of the 99000. Here we
will conclude our study with its interrupt interface. The topics that we cover
are as follows:

e el ey e
DU N OWEAO O W

. Interrupts

. External interrupt interface
. Interrupt priority levels

. External interrupt request

Priority encoder
Context switch sequence

. Interrupt vectors

. Interrupt mask

. Reset and nonmaskable interrupt

- External interrupt interface circuitry

. Extended operation instructions

. Internal interrupt functions

- Illegal opcode detection and macroinstruction detection
- Macrostore memory

. Macrostore modes of operation

. Entry and exit of macrostore
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17. Privileged mode
18. Arithmetic fault detection

7.2 INTERRUPTS

Interrupts are used to initiate a change in program environment based on
the occurrence of an event internal to the microprocessor or in external
hardware. For instance, when an interrupt signal occurs, indicating that an
external device, such as a printer, requires service, the 99000 must suspend
what it is doing in the main part of the program and pass control to a special
routine that performs the function required by the device. This segment of
program is known as the interrupt service routine. At completion of this rou-
tine, the processor must return control to the main program and execution
picks up where it left off earlier.

The 99000 provides capability for 17 external interrupts, 16 software
interrupts, and three internal interrupts. Two of the external interrupts are
dedicated to special functions known as reset and the nonmaskable inter-
rupt. But the functions of the other 15 external interrupts can be defined by
the user. Moreover, the functions of all 16 software interrupts are user de-
finable. On the other hand, the three internal interrupts all have dedicated
functions. These functions are illegal opcode detection, privileged mode vio-
lation detection, and arithmetic overflow detection.

7.3 EXTERNAL INTERRUPT INTERFACE

Figure 7.1 shows the external interrupt interface of the 99000, The 15 user-
definable interrupts are input to the microprocessor as a 4-bit code on
interrupt code lines IC, through IC;. Interrupt request (INTREQ) signals
the 99000 that a code is available on the IC lines. On the other hand, the
reset and nonmaskable interrupts have dedicated input leads. These inputs
are labeled RESET and NMI, respectively.

RESET O——{
NMT 00—
INTREQ O——]

164~1C,

MEM, BST,-BST, ¢

Figure 7.1 Interrupt interface of
the 99000.
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An interrupt acknowledge code is output on the status bus, MEMBST, -
BST,BST;, during the interrupt control transfer sequence. This code is equal
to 0101,. It can be decoded in external circuitry to produce an interrupt
acknowledge (INTA) signal. INTA indicates to external circuitry that the re-
quest for service has been accepted.

7.4 INTERRUPT PRIORITY LEVELS

The external interrupts of the 99000 are assigned priority levels. Figure 7.2
shows that the priority levels are called O through 15 and that they corre-
spond to external user-definable interrupts INT, through INT,s. Level 0
represents the highest priority and level 15 the lowest priority. Moreover, we
see that INT, through INT, correspond to interrupt request codes IC,IC,-
IC,IC; equal 0000, through 1111,, respectively.

Interrupt Priority: | Imerruptcode
eput el e, Ie, Ic, IC,
INT, 0 6 0 0 o
INT, 1 o 0 0 1
INT, 2 0o 0 1 0
INT, 3 00 1 1
INT, ] o 1 0 ©
INT, 5 0 1 0 1
INT, 6 o 1 1 @
INT, 7 B 4 a A
INT, 8 10 0 o0
INT, 9 10 0 1
INT, 10 10 1 0
INT,, 1 1o o1
INT,, 12 11 0 o
INT,, 13 o0 1
INT,, 14 T 1o
INT,, 15 T oW # N Figure 7.2 External interrupt
priority levels.

The importance of priority lies in the fact that if a interrupt service
routine has been initiated to perform a function at a specific priority level,
only devices with higher priority can interrupt the active service routine.
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Lower-priority-level devices will have to wait until the routine is completed
before their request for service can be acknowledged. For this reason, the
user normally assigns tasks that must not be interrupted frequently to
higher-priority levels and those that can be interrupted to lower-priority
levels.

An example of a high-priority service routine that should not be inter-
rupted is that for a power failure. For this reason, it is typically assigned to
priority level 1, !

Example 7.1

If a level 3 interrupt is presently being serviced, which other level interrupt request
could interrupt its service routine?

Solution: Only interrupts with higher-priority levels can cause the level 3 service
routine to be interrupted. That is, just levels 0, 1, and 2 could be initiated.

7.5 EXTERNAL INTERRUPT REQUEST

The request for service by a device that uses one of the external user-
definable interrupts is initiated through external circuitry. This circuitry
must put the request code corresponding to the priority level, 0000, through
1111,, of the highest-priority active interrupt onto lines IC,IC,IC,IC; and
then switch INTREQ to logic 0. For instance, if a level 5 interrupt is to be
requested, the code IC,IC,IC,IC; = 0101 is input together with INTREQ =
0.

The 99000 tests the logic level of INTREQ each machine cycle. If it is
found to be logic 0, execution of the current instruction is first completed
and then the code at IC, through IC, is read into an internal interrupt code
register.

7.6 PRIORITY ENCODER

Priority levels are assigned to external devices that request service with inter-
rupts by a circuit known as a priority encoder. Figure 7.3 shows how it
interfaces to the 99000. This circuit can have one interrupt input for each
of the 99000 priority levels. These inputs are labeled INT, through INT,,.
The signal that indicates that service is required by an external device is just
wired to the input of the encoder that corresponds to the priority level that
is to be assigned to the device. When an input is at its active 0 logic level, the
encoder produces the 4-bit interrput code at its IC, through IC; outputs
and switches the interrupt request signal, INTREQ, to its active level.

The priority encoder section also includes circuits that synchronize
the application of the interrupt signals to the input of the encoder section.
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INTREQ
l——0 INT,
——O INT,

Interrupt
93000 synchranizer/priarity
encoder circuit
K 1C,-ICy
CLKOUT i

Figure 7.3 Interfacing the priority encoder to the 99000.

This is done by providing latches that sample the interrupt signals supplied
by the external devices during each machine cycle of the 99000. The sam-
pling of INT, through INT; is synchronized with CLKOUT.

7.7 CONTEXT SWITCH SEQUENCE

When an interrupt request is acknowledged, a transfer of control is initiated
to a new program environment. As indicated earlier, the new segment of
program to which control is passed is called the interrupt service routine.
The transition to the service routine occurs through a mechanism known as
a context switch.

The context switch sequence of an interrupt is illustrated in Fig. 7.4.
Notice that before the interrupt occurs, the 99000 is executing instructions
in the program environment identified as A. For this reason, its internal
registers contain PCs, WP4, and STa. When set in this way, the instructions
of program A are being fetched one after the other from memory and exe-
cuted. The 16 registers in RAM identified as workspace A are being used as
working data registers.

If an external interrupt occurs while the 99000 is executing program A,
the instruction that is presently being executed is first completed. Then a
context switch is initiated to the new program environment corresponding to
the interrupt’s service routine. For instance, if an interrupt is activated that
has program B for its service routine, a context switch will be initiated to
pass control to the first instruction in program B and workspace B is brought
in for data operations.
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Memory
99000
Program A PCy
WP,
Workspace A ST,
Interrupt
occurs
Memory
Return
Program B \ 89000
N ec,
Workspace B \
~ WP,
Ryy —f= WP, STy
R —= PC,
Ry —1+ STa

Figure 7.4 Context switch mechanism (Courtesy of Texas Instruments,
Incorporated.)

The transfer of control to program B begins as the 99000 automatically
brings in the service routine vector, WPg and PCg, from memory and puts
them into the workspace pointer and program counter, respectively. This
vector defines a new program environment, PCy is the starting address of the
service routine in program memory, and WPy allocates a new workspace in
data memory.

During the memory read cycles that are performed to bring in the
values of WPg and PCp, the interrupt acknowledge (INTA = 1101) bus
status code is output on lines MEMBST, BST,BST;. As pointed out earlier,
this code can be decoded with external circuits to produce a signal that
acknowledges to the requesting device that service has been granted.

Next, the 99000 automatically saves the old internal register values,
WPy, PCy, and STy, in registers R,3, R4, and R 5, respectively, of the new
workspace. To do this, it must perform three memory write cycles. By saving
these values, linkage for return to the old program environment is preserved.

The 4-bit mask in bits ST, through ST, s of the status register are next
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set to a value equal to one less than the priority level of the active interrupt.
In this way, lower-priority interrupts are masked out. This completes the
transition sequence and the 99000 is ready to start executing program B,
thereby servicing the external device.

A return workspace (RTWP) instruction must be included at the end
of the service routine, program B. When this instruction is executed, it ini-
tiates a return sequence that passes program control to the original program
environment. In our example, this is program A.

As shown in Fig. 7.4, the return sequence begins with the 99000 fetch-
ing the old internal register contents, PCy, WPs, and ST, from registers
Ri3, Ry, and Rys of workspace B, and returning them to its internal
registers. Then the 99000 resumes instruction execution. In this way, pro-
gram control picks up in program A at a point where it left off due to the
occurrence of the interrupt request.

One of the major benefits of the architecture of the 99000 lies in its
very fast context switch mechanisms. In fact, the context switch sequence
we just described takes only 2.3 us to pass control to the service routine.
This is due to the fact that the 99000 has just three internal registers instead
of a large register file that must be saved before initiating a service routine.
Fast context switching is important in interrupt intensive system envi-
ronments, large multiuser systems, and for implementation of high-level
languages.

7.8 INTERRUPT VECTORS AND THE INTERRUPT VECTOR TABLE

As just mentioned, the entry point for the service routine of an interrupt is
defined by a vector consisting of a 16-bit program counter (PC) address and
a 16-bit workspace pointer (WP) address. In the 99000 system, these vectors
must be stored in a dedicated area of memory.

Figure 7.5 is a memory map showing in detail the locations of the inter-
rupt vectors. Notice that the vector for the 99000’s reset function is labeled
WPREgsgr and PCrgser. They are stored at address 0000, and 0002,
respectively, in memory. The next vector is for the level 1 external interrupt
vector WPiNT1 and PCiyti at 00044 and 0006,. It is followed by the vec-
tor for INT, through INT;s; at word addresses up through 003C,, and
003E .

In address range 0040, through 007E,4 of the vector table, we find 16
more two-word vectors. These vectors are labeled XOP, through XOP,; and
are for use by the extended operation instructions (XOPs) of the 99000.
XOPs are the software interrupts of the 99000 microcomputer.

A last vector is stored at addresses FFFC,s and FFFE,. It is the PC
and WP for the nonmaskable interrupt service routine.
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Memary Interrupt levels
Function i address Memory content ) CPU status register
0000, WP (reset) . 12 15
00024 PG reset) Allowed .n
0004, WP (INT ) 5
0006, PC (INT,)
Reset/external/internal : . 9
interrupt vectors . .
Not allowed Figure 7.6 Interrupt mask for
= 2 active level 9 interrupt. (Courtesy
003C,q WP (INT;5) 15 of Texas Instruments, Incorpo-
* L 003E,g PC (INT g} rated.)
: [ 0080, Wr 1X0P) shown in Fig. 7.6. Here we see that a level 9 interrupt has been initiated.
bt 0042, PC (XOPg) Therefore, the mask is set to 1000, = 8,4, respresenting level 8.
; i . . Actually, prior to acknowledging an interrupt request, the 99000 first
Ftanded opertion Lo s compares the interrupt code at IC, through IC; to the current value held in
: 5 the interrupt mask. If the code is lower priority (higher-level number) than
007Cyq WP (XOP5) the value currently in ST;, through ST;s, the interrupt is masked out and
L 007E, PC [XOP,,) will not be acknowledged until the active service routine has run to comple-
tion. For the example in Fig. 7.6, interrupt levels 9 through 15 are masked
General use memory out. In order to be acknowledged, they must first wait for the level 9 service
routine to be completed.
Nonmaskable interrupt FFFCyg WP (NMI) Figure 7.5 Interrupt vectors. On the other ha.md, if the new request is fqr yet a higher-priority
vector FFFEs PC (NMD) (Courtesy of Texas Instruments, (lower-level number) interrupt, the present routine is suspended and a con-
Ineorporated.) text switch initiated to the service routine for the new higher-priority inter-

rupt. From Fig. 7.6 we see that levels 0 through 8 can be initiated.
The address values that are stored in these locations are automatically P The inteiupt mask can be set to any gglue through software. This is

loaded into the workspace pointer register and program counter of the done with the load immediate interrupt mask (LIMI) instruction. As dis-
99000 as part of the context switch mechanism. cussed in Chapter 3, the format of this instruction is

Example 7.2
What are the addresses of WP and PC for the level 3 interrupt vector? Limi
Solution:  Looking at Fig. 7.5, we find that the level 3 interrupt vector is stored Here [ is the immediate operand that gets loaded into the mask.
& Using the LIMI instruction, program control can be used to enable/
WPINT3 = 000C;6 disable certain ranges of interrupts. For instance,
and
PCINT3 = 000E, LML 7
sets the mask to 0111. This disables external user-defined interrupts for
7.9 INTERRUPT MASK priority levels from 7 through 15 while leaving those for levels O through 6
enabled.
In our description of the context switch mechanism, we mentioned that with The load status (LST) instruction can also be used to manipulate the
the initiation of an interrupt, the interrupt mask in the status register is set interrupt mask, It differs from LIMI in that all bits of the status register are

to a level equal to one less than that of the initiated interrupt. An example is affected and the operand resides in a workspace register.
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Example 7.3
To what value is the interrupt mask set when a level 3 interrupt has been initiated?

Solution: The interrupt mask is set to 2 when the level 3 interrupt is initiated.
ST12ST,38T4ST;s = 0010,

7.10 RESET INTERRUPT

The reset interrupt is provided to allow hardware initialization of the 99000
microcomputer system. Normally, this is done only when power is applied to
the system. It can be used to initialize the internal registers of the 99000 and
external hardware signals such as those for I/O to their starting logic levels.

The RESET lead is the reset interrupt input of the 99000. It represents
the level 0 or highest-priority interrupt and cannot be masked out. The logic
level at RESET is sampled at each 1-to-0 transition of CLKOUT. If logic 0 is
found at this input for three consecutive samples, the 99000 stops execution
of the current instruction and sets signal lines WE/TOCLK, RD, and MEM to
their inactive levels. It stays in this state until RESET returns to the 1 logic
level.

Two clock cycles after RESET switches back to logic 1, a context
switch is initiated to the reset function interrupt service routine. This is done
through the vector WPgrgsgT and PCrgsgr that is stored at addresses 0000,
and 0002,¢ in memory. Next, the 99000 clears the status register and error
register. After this happens, execution of the power-up routine is initiated.
This service routine can be used to initialize the system resources such as /O
ports, the interrupt mask, and memory. Then it passes program control to
the start of the microcomputer’s application program.

Figure 7.7 shows a simple circuit that can be used to produce the hard-
ware reset signal. When the switch is depressed, capacitor C, is discharged
through R,. This gives the 0 logic level at the input of the buffer with

+5V

RZ

R, 99000
RESET
Reset
switch i IC'
- -

Figure 7.7 Reset circuit.
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Schmitt trigger input. The output of this buffer, which is also 0, is applied to
RESET. Logic 0 at this input is an active reset and causes the 99000 to sus-
pend operation. As the switch is released, C, recharges through R, back to
the 1 logic level and the initialization software routine is initiated.

The values of R, and C; must be selected to assure that three clock
cycles elapse before RESET returns to the one level.

7.11 NONMASKABLE INTERRUPT

The nonmaskable interrupt of the 99000 differs from the external interrupts
in that it cannot be masked out by the interrupt mask in the status register.
That is, if an external user-defined interrupt happens to be in progress when
a device uses the nonmaskable interrupt to request service, its service routine
is suspended and the nonmaskable interrupt’s service routine is initiated.
This interrupt input is typically used to implement specialized functions
such as a load function or single-step mode of operation.

A nonmaskable interrupt is requested by switching the NMI input of
the 99000 to logic 0. Upon completion of the current instruction, a context
switch is initiated to its service routine. The workspace and entry point of
the nonmaskable interrupt service routine is identified by the address vector
WPNM1 and PCyyi. This vector is stored in memory at addresses FFFC, g
and FFFE;,. As part of the context switch, the interrupt mask in the status
register is automatically cleared to 0000,4. This masks out all external
interrupts.

7.12 EXTERNAL INTERRUPT INTERFACE CIRCUITRY

Up to this point in the chapter, we have discussed interrupts relative to the
response initiated by the 99000 after an interrupt code and interrupt request
have been input. However, we did indicate that external circuitry is required
to synchronize, priortize, and encode the interrupt signals before they are
applied to the interrupt interface. Sometimes, additional circuitry is added
to the external interface to enhance further the 99000’s interrupt structure.
For instance, circuits can be included to permit masking of individual inter-
rupt inputs or for creating edge-triggered interrupt inputs.
Let us now look at some circuits that can be used for these purposes.

Eight-input Interrupt Interface
A device that can be used to provide the priority encoder function for the

99000 is the 74LS148 priority encoder. One of these devices can be used to
construct an eight-interrupt interface for the 99000 microcomputer system.



176 Interrupt Interface of the 99000 Chap. 7
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INT, H— | 7 GS p— INTREQ

7418148 | ¢ o1 ICO
PnonwAz p=—"711¢1 900
encoder pqfy  lico
I_NTBO—]—'—--' 74L5373 Loy . 13

|
: Octal latch
|
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Figure 7.8 Eight-interrupt interface circuit. (Courtesy of Texas Instru-
ments, Incorporated.)

This is done by connecting the device as shown in Fig. 7.8. Notice that a
74LS373 octal latch has been added to synchronize the inputs of the en-
coder. In this way, the logic levels at interrupt inputs INT, through TNT,
are sampled and latched once each machine cycle. This occurs on the 0-to-1
edge of CLKOUT.

The outputs of the 74LS373 latch are applied to inputs 0 through 7
of the 74L85148 priority encoder. Here they are prioritized and the code
corresponding to the highest-priority active input is generated at output
A,A, A,. This output code is applied to IC,IC,IC; of the 99000. The unused
interrupt code input, IC,, is fixed at the 1 logic level.

Output GS of the priority encoder, which switches to logic 0 whenever
an input is active, is connected to the INTREQ input of the 99000. In this
way, it signals the 99000 that a device is requesting service, and that a valid
code is available at the output of the encoder. In response, the 99000 reads
the code at IC,IC,IC,IC, and if acknowledged, a context switch is initiated
to the corresponding service routine.

Fifteen-Input Interrupt Interface

Figure 7.9 shows how two 74LS148 devices can be interconnected tc pro-
vide a 15-interrupt interface for the 99000. Notice that the interrupt inputs
are first synchronized to CLKOUT and latched at the inputs of the encoder.
The upper 74LS148 has as its inputs the seven higher-priority interrupt in-
puts, INT; through INT,. The lower device accepts interrupt inputs INT,
through INT,;. At the output side of the encoder, we see that the GS, A,,
A, and A, outputs of the two devices are gated together to generate the
signals for the INTREQ, IC,, IC;, and IC; inputs of the 99000. Moreover,
the EO output of the upper encoder is inverted and supplied to IC, to dis-
tinguish between the two groups of eight interrupt inputs.

For instance, when an interrupt occurs, one of the interrupts in the
group INT, through INT,, EO, equals 1. This makes IC, switch to the 1
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In

SN7408
T, 0— 6’ E as __
! Fm INTREQ
5 74LS148 A2 p-
g} priority
gf encoder A1 P S48
INT, ——q0 ., A0P- :1> 1co
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CLKOUT 0—f J, __3:>>— IC1 99000
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p— e Ic3
INT,; 0— 0 A0

Figure 7.9 Fifteen-interrupt interface circuit. (Courtesy of Texas
Instruments, Incorporated.)

logic level. At the same time, EO is applied to the EI input of the lower-
priority encoder. Logic 1 at this input disables the device and its outputs are
forced to the 1 logic level. In turn, the gates are enabled for use by the
upper-priority encoder device. Therefore, the IC, through IC; outputs pro-
duced by the gates correspond to the logic levels output at A, through Ag,
respectively, of the upper-priority encoder device.

Edge-Triggered Interrupt Inputs

The interrupt inputs provided by the 74LS148 in the circuit of Figs. 7.8 and
7.9 are level detecting. Therefore, the external device supplying the request
for service must maintain the signal at the interrupt input until it is
?cknowledged by the 99000. Otherwise, the request for service would be
ost.

Some external devices produce a short-duration pulse instead of a fixed
logic level for use as an interrupt signal. If the 99000 is busy servicing a
higher-priority interrupt when the pulse is produced, the request for service
could be completely missed. To overcome this problem, additional circuitry
can be included in the interrupt interface to convert the level-sensitive inter-
rupt inputs to positive or negative edge-triggered inputs.

The circuit shown in Fig. 7.10 demonstrates how a D-type flip-flop can
be connected to make interrupt 7 negative edge triggered. On the 1-to-0
transition of INT,, the logic 1 at the D input of the 7T4LS74 flip-flop causes
its outputs to set. This makes @ logic 0 and issues a level 7 interrupt request
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Figure 7.10 Negative edge-triggered interrupt input.

to the 99000. Even if INT, returns to logic 1, the @ output of the flip-flop
stays at logic 0. In this way, the request for service is maintained until it is
acknowledged by the 99000.

Notice that the flip-flop is cleared with an output line from the serial
output interface. This output must be pulsed to logic 0 as part of the inter-
rupt service routine to remove the interrupt request. Otherwise, the inter-
rupt would be initiated a second time when its service routine runs to
completion.

7.13 EXTENDED OPERATION INSTRUCTIONS

The extended operation (XOP) instruction of the 99000 provides a mecha-
nism for performing a vectored call of a software routine. Typically, this
software routine is an emulation routine for a more complex function.
However, they can also be used to perform supervisor calls for an operating
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system. The XOP emulation routines are written using assembly language
instructions, assembled into machine code, and stored in the main program
memory of the 99000 microcomputer system.

The general form of the XOP instruction is

XOP S,n

where n is the number assigned to the extended operation and can be any
number from 0 through 15. For instance, XOP, could define a floating-
point addition instruction and XOP, a floating-point subtraction instruction.

On the other hand, § is an effective address that can be used as a
pointer to the location of a table in memory that is used to pass parameters
to the extended operation routine. For example, in the case of a floating-
point addition emulation routine, the main program must put the two
floating-point numbers into the table such that they can be accessed during
fhe addition.

The starting point and workspace data area used by each XOP instruc-
tion is defined by a vector stored in the interrupt vector table in memory.
Earlier we identified vector table locations in the range 0040, through
007E,¢ as those assigned to vectors for XOP, through XOP,;. For example,
XOP, causes a vectored call of the subroutine corresponding to WPxop1 and
PCxopi located at word addresses 0044, and 0046 4, respectively.

The XOP instructions act like software interrupts. This is because, when
executed, they initiate essentially the same context switch sequence that
takes place when the 99000 services a hardware interrupt. That is, its vector
is fetched from memory and loaded into WP and PC. Then the old contents
of WP, PC, and ST are saved in registers R,3, R4, and Rs, respectively, of
the new workspace. The one difference is that the source address S is loaded
into R;; of the new workspace. Therefore, instructions in the emulation rou-
tine can access parameters in the table by simply using the indirect work-
space register with displacement addressing mode.

Just like for the BLWP instruction, a RTWP instruction is needed at the
end of the extended operation routine to return control to the main part of
the program. In this way, execution is resumed with the instruction that
follows the XOP instruction.

The XOP instruction operates in this way only when status bit ST, is
logic 0.

7.14 INTERNAL INTERRUPT FUNCTIONS

Internal interrupts represent error conditions which when they occur are
detected automatically by the 99000. As identified earlier, the three inter-
nal interrupt functions are illegal opcode detection, privileged mode viola-
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tion detection, and arithmetic overflow detection. These internal functions
are dedicated to the level 2 interrupt. The privileged mode and arithmetic
overflow interrupt functions are maskable and can be interrupted by level 0
and level 1 interrupts. On the other hand, the illegal opcode interrupt is
nonmaskable.

Whenever one of these three internal conditions occurs, the 99000 sets
the corresponding bit in its internal error register and then initiates a request
for a level 2 interrupt. Instructions in the level 2 service routine can examine
the bits of the error register to identify which ones are set. Based on these
findings, a branch can be initiated to a segment of program that is provided
to service the error condition.

If none of the error bits are set, an external level 2 interrupt request has
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Figure 7.11 External error register.
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been issued and its service routine is initiated through the vector WPmyT2 and
PCinT2. This routine could be written to examine bits in an externally im-
plemented error register in which bits have been assigned to additional func-
tions. This external error register can provide externally detected system
level errors such as memory parity errars, addresses that are out of range, or
an attempt to write into write-protected memory.

Figure 7.11 shows how an external error register can be implemented in
the 99000 microcomputer system. Notice that error inputs (ERI) are pro-
vided for only those error conditions that are not already implemented in
the internal register.

Looking at the circuit diagram, we see that the contents of the external
error register is updated each CKLOUT cycle. If any of the error conditions
have occurred, the corresponding error register outputs become logic 1. This
causes the output of the NOR gate to switch to logic 0. This output is sup-
plied to INT, and signals the 99000 of an external error by initiating a level
2 interrupt request. Once initiated, the service routine for the external level
2 interrupt can examine the bits of the external error register through the
serial input interface to identify which error condition has occurred. Then a
branch can be made to the appropriate service routine.

7.15 ILLEGAL OPCODE DETECTION, MACROINSTRUCTION
DETECTION, AND MACROINSTRUCTION EMULATION

Iilegal opcode detection (ILLOP) is one of the internal functions dedicated
to the level 2 interrupt of the 99000. Using this mechanism, the attempt to
execute an opcode that does not correspond to one of the instructions in
the instruction set of the 99000 is identified. It is flagged with an error
condition and then an interrupt initiated to pass control to an error service
routine.

llegal Opcode Detection Sequence

Figure 7.12 shows the sequence in which the 99000 microprocessor deter-
mines how to initiate execution after fetching an opcode from program
memory. Here we see that if it is identified as a standard opcode, a branch is
taken to a microcode routine that performs the function. However, when an
illegal opcode is detected during the instruction acquisition cycle, the 99000
does not execute the instruction. Instead, it first outputs the macroinstruc-
tion detect (MID) bus status code (1110) on lines MEMBST, BST,BST};.
Then it checks the other system resources: attached processors, attached
computers, macrostore, and main memory software emulation to determine
if they can perform a function for the opcode. If they cannot, it handles the
illegal opcode as a violation. In this case, the illegal opcode flag (ILLOP), bit
13 in the error register, is set and a level 2 interrupt initiated.
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Handle as violation

The interrupt service routine must test the ILLOP bit of the error
register to confirm that the cause of the level 2 interrupt was an attempt to
execute an illegal opcode. Since the ILLOP bit of the error register is located
at I/O software address 1FD2 g, it can be read with a test bit I/O instruction
and then tested with a jump on equal instruction. Once initiated, the level 2
interrupt service routine for detection of an illegal opcode cannot be inter-
rupted. At completion of the service routine, a SBZ instruction must be
executed to reset the ILLOP error bit; otherwise, its service routine will be
reinitiated.

Macroinstruction Detection

Macroinstruction detection (MID) is an extension of the ILLOP detection
mechanism we just described. Through it, the baseline instruction set of the
99105A can be easily enhanced with emulation routines for additional in-
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structions called macroinstructions. This concept is illustrated in Fig. 7.13.
For example, the additional functions could be emulation routines that
implement more complex, specialized operations such as those for floating-
point and double-precision arithmetic. Opcodes that are not used by the
instruction set of the 99105A are assigned to these new macroinstructions.
The result is a 99000 family component with a more powerful instruction
set.

As shown in Fig. 7,12, the MID mechanism has the ability to pass con-
trol to a high-performance firmware emulation routine or an even higher-
performance hardware emulation such as an attached processor or attached
computer.

Macrostore memory is a special high-performance memory section of
the 99000 microcomputer system whose primary use is for storage of firm-
ware emulation routines of macroinstructions. The emulation routines for
macroinstructions are not microcoded into the 99000. They are written and
debugged in assembly language, assembled into machine code, and then pro-
grammed into the macrostore program memory area.

The macrostore memory feature permits creation of a family of 99000
devices with specialized instructions designed for use in common types of
applications. An example is a device with standard macrostore instructions
for performing floating-point arithmetic instructions. The 99110A floating-
point microprocessor is a device that has this type of instruction set. This
capability can also be employed by a user to design a custom device with
some special-purpose instructions that are important to their application. In
this way, we see that macrostore increases the flexibility of the 99000 micro-
computer system and improves its overall performance.

Macrostore Memory Address Space

The 99000 microprocessor has the ability to address up to 64K bytes of
macrostore memory. This macrostore memory space is totally independent
of the 256K-byte main memory address space we introduced in Chapter 5.

Figure 7.14 shows an address map of the macrostore memory space.
Notice that the lower 4K of addresses are dedicated for use internal to the
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the address stored in table location 0800,¢. On the other hand, if the opcode
has 0001, = 1,4 in these bit positions, transfer of control is to the address
held at location 0802,.

A few of the instructions in the 99000’s instruction set are considered
two word instructions. If their second word initiates a MID, control is passed
to the emulation routine through the vector at address 0810,, of the entry-
point table. Examples of two-word instructions are: double-precision add
(AM), double-precision subtract (SM), and shift right arithmetic double
(SRAM).

The extended operation instructions (XOPs) can also be used to initiate
instructions in macrostore. However, this capability is optional and can be
enabled or disabled with bit 11 of the status register.

Modes of Macrostore Interface Operation

The macrostore interface of the 99000 can be initialized to work in one of
three modes. Its simplest mode is obtained by simply tying the attached
processor present (APP) input to ground and then performing a hardware
initialization with the RESET input. When the 99000 is set up and ini-
tialized in this way, the macrostore interface is disabled. Therefore, detec-
tion of an illegal opcode automatically initiates a level 2 interrupt.

The most common mode of operation is that known as the standard
mode. The 99000 is put in this state by holding APP at the 1 logic level
during hardware reset. When set to work in this way, the internal macro-
ROM and macro-RAM as well as external macrostore memory are all func-
tional. Detection of a macroinstruction through the MID mechanism causes a
vector to transfer control to the entry point of the routine in macro-ROM.
As the instructions in the routine are executed one after the other, the
macro-RAM workspace is typically used for data operations.

Read and write bus cycles to the internal macrostore memory are
always performed in one machine state and are transparent to the external
memory interface. Moreover, the timing for read or write cycles of external
macrostore are identical to those for system memory. However, they are
accompanied by the macrostore access bus status code, AUMS = 1001,
instead of those output for accesses of main system memory. This code can
be externally decoded to enable the address decoder for the external macro-
store memory system. Control signals RD, R/W, and WE indicate to external
macrostore memory whether a read or write operation is to take place.

The third mode, which is known as prototyping mode, is achieved by
pulling both APP and RESET to logic 0 together. When the 99000 is ini-
tialized in this way, internal macro-ROM is disabled. At the same time, its
address range is mapped into the external macrostore address space. On the
other hand, internal macro-RAM stays functional just as in the standard
mode.
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This prototyping mode permits storage of macroinstruction code in
external PROM for testing. After debugging is complete, this code can be
brought on-chip to the macro-ROM area. This facilitates easy development,
testing, and prototyping of custom macrostore functions. Moreover, if the
production needs of the application do not warrant the cost of generating
masks for internal macro-ROM, the 99000 can be left in this mode when
implemented in the final system design.

Internal Macrostore Entry and Exit

When the illegal opcode detection mechanism identifies an illegal opcode
that is emulated in macrostore, the MID mechanism passes program control
to an emulation routine in macrostore memory. The first step in the macro-
store entry sequence is that the illegal opcode is saved in register R of the
macro-RAM workspace. Then a context switch is initiated to the macro-
instruction in macrostore memory. The entry-point vector associated with
the MID opcode is read out of the table and loaded into the 99000’s pro-
gram counter and the workspace pointer is cleared to 0000,,. Next, the old
WP, PC, and ST are saved in registers R,3, R4, and R,s of the macro-RAM
workspace. Remember that the value of PC saved in register R,; points to
the instruction following that which invoked the macroinstruction. There-
fore, this preserves return linkage to the original program context,

At this point, the 99000 fetches the first instruction of the emulation
routine from macro-ROM and executes it. Execution of instructions from
macro-ROM continues until the macroinstruction function is complete.
During execution of the macroinstruction routine, data stored in main
memory can be accessed as operands. At the end of the routine, the old’
status value that is held in register R;; may be updated to represent the
status at completion of the macroinstruction.

At entry of the macroinstruction routine, the illegal opcode, which is
saved in Rs, can be examined by the emulation routine. In this way, it can
be used to initiate a branch to one of a number of different functions related
to the opcodes in the group that vectors through the same entry-point table
location,

Macroinstruction emulation routines must be terminated with a return
workspace (RTWP) instruction. It is this instruction that causes the 99000 to
exit execution from macro-ROM and return control to execute instructions
in main system memory. When RTWP is executed, the old WP, PC, and
updated ST are returned to the internal registers of the 99000. Execution
picks up in the main program memory at the instruction following that
which is called the macroinstruction.

If a group of illegal opcodes are not to be supported by emulation
routines in macrostore, control is still passed to the entry-point table in
macrostore memory. A special return instruction, which is initiated with
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opcode 0382, must be included at the entry-point address of the macro-
instruction routine in macro-ROM. Execution of this instruction causes exit
of macrostore memory and reentry of the ILLOP detection mechanism. At
termination, the ILLOP detect-error condition is generated and then a level 2
interrupt initiated.

7.16 PRIVILEGED MODE

To permit creation of a user/supervisor system environment, the 99000 has
been equipped with a privileged mode of operation. Selection of this mode
of operation is done through bit 7 of the status register. It can be set to logic
1 under software control to enable the privileged (supervisor) mode. This
designates certain 1/O and system functions as privileged.

When the 99000 system is set in this way, the operator designated as
the user (nonprivileged) only has access to those system resources not iden-
tified as privileged, while the operator designated as the supervisor (privi-
leged) has access to all system resources. If the user attempts to access a
privileged resource, execution is inhibited. Moreover, the attempt is flagged
with an error condition by setting the PRIVOP bit in the error register and
then a service routine is initiated through the level 2 interrupt.

Privileged Mode Instructions

The instructions that fall into the group known as privileged mode instruc-
tions are those that affect output, modify the contents of the status register,
the external instructions, and instructions that deal with extended system
memory. Figure 7.16 lists the mnemonics for these instructions, their names,
and identify their functions.

In terms of the IfO interface, output operations initiated by the SBO,
8BZ, or LDCR instructions are restricted when the 99000 is in the user
mode. This restriction is true only over a specific range of the I/O address
space. That is, the user-mode output restriction applies to the address range
from 1C00,4 to TFFE;s of the serial I/O address space and 9C00,¢ to
FFFE,4 of the parallel I/O address space. For this reason, output functions
that are to be accessible only when in supervisor mode must reside at one of
these privileged addresses.

The privileged instructions that relate to status register operations are
LIMI, RSET, LST, and RTWP, The restrictions on these instructions relate
to their ability to change bits in the status register. For example, the LIMI
and RSET instructions permit loading of the interrupt mask, bits ST,
through 8T,s of the status register, with a new value and clearing of this
mask, respectively. Since the contents of the status register cannot be
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Mnemanic Instruction Function
s80 Set bit one
88z Set bit zero Data output
LDCR Load communication register unit
LIMI Load interrupt mask
RSET Reset Modify
internal
LST Load status . registers
RTWP Return workspace pointer
IDLE Idle
RSET Reset
External
CKON User defined instruction
output
CKOF User defined
LREX User defined
LDS Long distance source
Extended memary N .
LDD Long distance destination Figure 7.16 Privileged mode

instr

modified while in the user mode, neither of these two instructions can be
executed.

The other two instructions, LST and RTWP, provide for loading of
the status register from a workspace register and for initiation of the return
context switch mechanism, respectively. In the privileged mode, these
instructions do execute; however, their affect is limited to modification of
bits 0 through 5 and 10 of the status register. The rest of the bits remain
unaffected.

In this way, we see that putting the 99000 in the privileged mode eli-
minates the ability of the user to manipulate the interrupt mask or modify
the options selected with status bits.

The next group of instructions in Fig. 7.16 fall into the external in-
struction category. The IDLE, RSET, CKON, CKOF, and LREX instruc-
tions provide the ability to set a specified I/O port in the privileged I/O
address space from 1EC44 through 1ECE,¢ to the O logic level. For this
reason, these instructions cannot be executed when in the user mode. As
indicated earlier, the RSET instruction has a second function which is to
reset the status register.

The I/O functions related to the external instructions provide the
ability to define additional supervisor functions, For instance, they could
be used to enable supervisor accessible memory.
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The rest of the instructions in Fig. 7.16 relate to accessing extended
memory. They are long-distance source (LDS) and long-distance destina-
tion (LDD). These two instructions are available only on the 99110A.
They are also privileged and provide another means of restricting memory
use in a user/supervisor environment.

Privileged-Mode Violation Detection

The 99000 has the ability to detect automatically the occurrence of a pri-
vileged instruction. When nonprivileged mode is enabled, an attempt to
execute one of the privileged instructions represents a violation. The instruc-
tion is fetched and decoded but not executed. Instead, bit 14 (PRIVOP) of
the error register is set to flag the occurrence of the privileged mode viola-
tion; an internal level 2 interrupt is requested; and then a context switch is
initiated through the interrupt vector WP; and PC, to its service routine.

Earlier we pointed out that the level 2 interrupt can also be used by
an external interrupt as well as the three internal interrupt conditions. For
this reason, the service routine must examine the PRIVOP bit of the error
register to determine whether or not the cause was a privileged-mode viola-
tion. This bit is located at I/O software address 1FD4,. If it is set, a branch
must be initiated to a service routine for the privileged-mode violation. At
the completion of the service routine, PRIVOP (bit 14 of the error register)
must be cleared with an output operation.

7.17 ARITHMETIC FAULT DETECTION

The third internal interrupt function is arithmetic fault detection capability.
That is, the 99000 has the ability to check automatically for the occur-
rence of an overflow condition during all arithmetic operations. The benefit
of this feature is that no software overhead is needed to identify that an
overflow has occurred.

Arithmetic fault detection is an option and is enabled by setting status
bit 10 to logic 1. If an overflow occurs, the 99000 always flags the condition
by setting bit 4 (AO) in the error register. However, for the level 2 interrupt
to be initiated, the overflow enable bit must be set.

Just like for the other internal functions, the level 2 service routine
must examine error bit 4 with an input operation to identify that in fact the
cause of the interrupt was an arithmetic overflow. This bit is located at I/O
software address 1FCO,,. If it is set, a branch can be made to a routine for
servicing the error condition. For instance, a message could be displayed to
identify that an overflow has occurred. At the end of the routine, the over-
flow error bit must be cleared.
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ASSIGNMENT

Section 7.2

1. What is the function of an interrupt?
2. Name the three types of interrupts supported by the 99000.

Section 7.3

3. How many external maskable interrupts can be applied to the 990007
Section 7.4

4, What is meant by “interrupt priority”?

5. What value must be loaded into the interrupt mask to mask out interrupts with
priority less than 7?

Section 7.5
6. How does the 99000 receive an interrupt request from a device with priority level 9?7
Section 7.6

7. What function is served by a priority encoder circuit?

8. If the interrupt 2 and interrupt 15 inputs of the circuit of Fig. 7.3 are at their active
0 logic levels, what code is output to the 99000 on IC, through IC;?

Section 7.7

9. What is the function of the context switch mechanism relative to interrupt servicing?

10. What information is saved to permit return from an interrupt service routine? Where
is it saved?

11. What instruction is used to initiate the return back to the original program environ-
ment at completion of an interrupt service routine?

Section 7.8

12. What information is provided in the interrupt vector table?
13. Where does the vector for XOP; reside in memory? How is this vector organized?

Section 7.9

14, What happens to the interrupt mask when a level 5 interrupt is acknowledged for
servicing?

15. Write an instruction that will initialize the interrupt mask to 15.
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Section 7.10

16. When RESET is asserted, what happens to registers WP, PC, ST, and ER?

Section 7.11

17. How does NMI differ from a maskable interrupt and reset?

Section 7.12

18. If inputs INT, and INTy in the circuit of Fig. 7.8 become active, what are the out-
puts of the latch and priority encoder after the next pulse at CLKOUT?

Section 7.13

19. Write an instruction for XOPg in which the parameter table resides in memory start-
ing at address >A000.

20. Give an overview of the mechanism by which execution of XOP; changes program
context.

Section 7.14

21. What are the three internal interrupt functions of the 990007

22. What priority level is assigned to handle internal interrupts?

23. How can software identify which of the internal interrupts has occurred?

24. Assuming that the external error register is located at 1/O address >5000, write a
level 2 service routine that tests the error register to determine if an external error
condition has occurred. If not, program control is to be returned to the main pro-
gram. If an error has occurred, the service routine must identify which error input is
active and then pass control to its service routine,

Section 7.15

25. Write a level 2 service routine that will test the state of the ILLOP error bit. If ILLOP
is set, control is to be passed to a service routine identified by the label CORRECT;
otherwise, control is to be returned to the main program.

26. What are the functions of macro-ROM and macro-RAM?

27. If a MID opcode detected by the 99000 is >034A, at what address does its vector
reside? What gets loaded into PC and WP?

28. What is the importance of the 99000’ capability of implementing macrostore in
external memory?
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Section 7.16

29. Distinguish between user mode and supervisor mode.

30. Write a program for the level 2 service routine to test the PRIVOP bit of the internal
error register and initiate a jump to the routine identified by label VIOLATE. If
PRIVOP is not set, control is to be returned to the main program.

Section 7.17

31. Write a routine for the level 2 interrupt that will check to determine if an overflow
has occurred. If yes, control is to be passed to a service routine identified by label
OVRFLW. If no, control is to be returned to the main program.
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Address, 20-21, 28-30, 41, 43,
122-23, 131-32, 135, 145,
152, 157-58, 171-72, 175

base, 30, 58—59 147—50 158

bus, l9—20 23, 28, 122,
127-29, 133-88 147, 157

exiended, 123, 136

1/0, 21, 64, 147—48 153, 159,
188-89

logical, 123, 126, 135-36

register, 29
space, 43- 44 64 122 23,
126-27
Addmniru
Addressing modes, 49-84
direct, 49, 51-53
immediate, 49-51, 64
indexed, 49, 58-61
indirect, 48-49
1/0 relative, 49, 64
Program counter relative, 49,
61-63
workspace regisier direct, 49,
53-54, 67, 71
workspace register indirect, 49,
55-56

workspace register indirect
autoincrement, 49, 56-58
Alpha particles, 138
APP* (attached processor
present), 23, 186
Arithmetic instructions, 64,
70-80

absolute value (ABS), 76-77

add bytes (AB), 72, 126

add immediate (A1), 72

add words (A), 33-37, 42, 45,
71,125

decrement (DEC), 73
decrement by two (DECT),
73
duuble-p:eemon add (AM),
73-74, 126, 186
d(zll{‘lale-ptnldon subtract (SM),
6

increment (INC), 73, 75-76
increment by two (INC'I‘). 73,
T75-T6

negate (NEG), 76

signed divide (DIVS), 7

signed multiply (MPYS) 78

subtract bytes (SB), 72

subtract words (8), 45, 72

unsigned divide (DIV), 78

unsigned multiply (MPY), 78
ALU (arithmetie logic unit), 25,

5,71

Arithmetic overflow detection,
31, 166, 180, 190

Anlhmeﬁe uverﬂow error, 32,
43, 190

Assembly language, 44-45, 47,
179, 183

Attlched computer, 181, 183

Attached processor, 23, 181, 183

Attached processor interface, 18,
23

Autoincrement, 56-57, 147, 158
Automatie write- thzoush 141
Average calculation program,

3-5
Base address, 30, 58-59, 147-50,
168
Bidirectional bus, 20

Binary-coded deehnl.l (BCD),
105-6

BCD-to-binary conversion

program, 10!

Bit, 81, 84-85, 124, 147, 150,
153, 189

Bit-serial, 45, 150-53

Block move program, 101-3

Boolean logic function, 81

Bus bandwidth, 35, 132

Bus cycle, 20, 32, 25, 28, 43,
122, 127, 181-33, 153

I/Oﬁ;&l 150-53, 157- 59,

instruetion acquisition
memory,

wotkspace memory, 35

Bus status code, 22 38—31’ 123,

127-29, 147-48 157, 167
170, 181

DoP (de.-thnﬂon operand
transfer), 128-29

HgLDA (hold m:knowledle).

-23
IOP limmedhk operand),
9
]O (hlpullolnvul). 22, 151,
153, 157

1AQ (in:trucunn acquisition),
22, 28, 34-36, 128-29, 181

AUMS (internal arithmetic logic
unit), 37, 186

INTA (interrupt acknowledge),
167,170

MID (mncromnmctiun detect),
181, 186-87

RESET (reset), 22

SOl;éwuru operand transfer),

‘W8 (workspace transfer),
35-37, 128-29

Byte, 13, 43, 57, 67-68, 81, 84,

95-95 101 122-26 145-47,
150, 157, 159
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Byte (cont.)
even, 123,125
even-addressed, 43
odd, 128,126
odd-addressed, 43

Cache controller, 140
Cache mmury. 140-41
Cache tag, 1.
CPU (central pmndm unit),
8-10, 756-78
Check code, 139
Clock, 24-25, 27
CLKIN (clock input), 25
CLEQUT (elock oufput), 25,
130, 150, 152-53, 169, 174,
176, 181
Code segment, 44
Comment, 44, 47
Communication register unit, 144
Compare instructions, 93-87
compare bytes (CB), 93-94
compare immediate (CI), 93-94
compare ones corresponding
(COC), 93, 956
compare words (C), 93-94
compare zeros corresponding
(CZC), Bl. 95
Computer, 2-9
lﬂzt;nmuﬂe logic unit (ALU),

block diagram, 8-9

central processing unit (CPU),
8-10, 75-76
fini!

internal memory, 8-10

mainframe, 3-4, 10

memory unit,

microcomputer, 1, 4-5, 9-14,
16, 41-43, 47, 64, 125-26,
131-32, 135, 138, 140, 161,
176, 179,181, 183

minicomputer, 4-5, 10, 13, 47

output unit, 8-9

primary storage, 8

secondary storage, 8

uueill purpose computer, 4-5,

9,12-1
Cante:t. switch, 30, 42, 117,
169-72, 175-76, 179, 187,
189-9
Crystal, 24
Cyecle time, 25, 130

Data, 2, 8-10, 12-13, 20, 27, 44,
58,122,124, 135, 139-41,
146, 1563, 158-59, 169

bus, 19-20, 22, 28, 122,
124-29, IBMS. 139,
145-46, 157, 159
organization, 124-26
segment, 44, 123, 137
storage memory, 10, 14, 29,
123, 185,137
Data bus buffer, 133
Data transfer instructions, 64~70
load immediate (LI), 45, 64,67,

87,94
load interrupt mask immediate

pt
(LIMI), 84, 67, 173, 188

load status register (LST), 69,
173,188
load workspace pointer (LWP),

load workspace pointer
immediate (LWPI), 49-50,
64-67

move bytes (MOVB), 67-68

move words (MOV), 47, 51-58,
67-69

store status register (STST), 69

=70
swap bytes (SWPB), 67-68
Dedicated memory, 126-27, 171
Demultiplexed system bus,

2-33
Destination operand, 33-35,

42,
45, 47, 51-55, 57, 67, 71-74,

84,94,125,128
Destination register, 29, 33-35,
42, 54
DMA (direct memory access), 23
controller,
HOLD* (I.lold).
HOLDA (hold mknowled.ie).

23
interface, 18, 23
Displacement, 29, 61, 63, 99,
101,149
Double-bit error, 139
Double-precision arithmetic. 73,
183 .

Early write, 129
Eﬂeelive address, 60, 149,

Eims byte wide nnn].\el input
ports, 1
Eight byt.e-wnde panll:l output
ports, 161-62
Eight input interrupt interface
circuit, 175-76
EP]IGM (erasable programmable
ad only memory), 136
EPRGMM!“C RAM memory
subsystem, 135
Error bits, 43
arithmetic overflow (AO), 32,
43,190
illegal opcode detection
(ILLOP), 32, 43, 166, 179,
181-82, 187-88
privileged mode viclation
(PRV), 81-32, 43, 166, 179,
188, 190
Error detection and cormrection
(EDAC), 138-40
ER (error register), 28, 32, 41,
43,174, 180-82, 190
Even-addressed boundary, 43,
12

5
Execution phase, 35
Extended operation instructions,
127,171,178-79, 186
Extended operation instruction
vector, 127,171,179
External error ngisﬁer 8
Extermal instructions, 188-89
External memory, 8, 10
External parallel 1/O interface
circuitry, 159-62

Index

Fibonacei series program, 11417

Fifteen input interrupt interface
circuit, 176-77

Firmware emulation routine, 188

Floating-point arithmetic, 17, 27,

71,179, 183
Flowchart, 102-3, 106, 109, 114
Genunl-pn:pou computer, 3-5,
9,13
General use memory, 126-28

Hit, 140
Hold state, 22~23

Illegal opcode detection, 32, 43,
166,179, 181-82, 187-88
Immediate operand, 28, 50-51,
64, 66, 72, 81, B4,93-94
Immediate mode instruction, 64
Index, 59-61
Index register, 29, 61
Indirect address, 57-58
Initialization, 23, 174-75, 186
1/0 (input/output), 10, 12,
20-21, 30, 44, 144-62
address pointer, 148
address space, 147-48
base address, 30, 58-59,
147-50, 158
hardware address, 148-49
interface, 144-62
parallel interface, 145-46, 159
port, 145, 147, 150-51, 157,
174,189
serial interface, 18, 20-21, 27,
146-46, 155
software address, 148-49, 182,
190

I/O instructions, 64, 146-48
load communications register
(LDCR), 146-47, 153, 157,
162, 188
set bit one (SBO), 146, 149-50,
188

set bit zero (SBZ), 146, 149-50,
182, 188

store communications register
(STCR), 146-47, 153, 157,

159
test bit (TB), 1486, 149, 153,
182

Instruction, 2, 10, 27-28, 32-37,
41-45, 47, 64-90, 124, 159,
168,175, 188-89

execution, 33-37, 47-49
fetch, 35, 42,97, 123-24
general format, 47
set, 13, 17, 27, 44, 64, B5,
938, 97, 1486, 181, 183
Integrated circuit (IC), 8
Intelligent instruction prefetch,

35
Internal interrupt, 166, 179

31, 166, 180, 190
illegal opcode detection, 32,
43, 166, 179, 181-82,
187-88
privileged mode violation, 32,
43, 166, 179, 188, 180
Internal memory, 8-10

Index

Interrupt, 18, 22-23, 31, 186

context switch, 80-42, 117,

169-72, 175-76, 179, 187,
89-80

edge-triggered, 175, 177-78

extended operation
instructions, 127, 171,
178-79, 186

external user-definable, 22-23,
166-68,171,173,175

internal, 166, 179

level-sensitive, 177

mask, 31, 67, 166, 170,
172-75, 189

nonmaskable, 22-23, 166, 171,

175

prioTﬂty level, 23, 31, 167-68,
1

reset, 22-23, 166, 170-72,
174-75

service routine, 126-27, 166,
169-70, 174-75, 178,
181-82, 188, 190

software, 166,171, 179

ve;:tor. 126,171-72, 17475,

79

vector table, 171-72, 179
Interrupt interface, 18, 22-23,

165~

circuitry, 175-78

IC-IC (interrupt code), 23,
166-68,173, 176

INTREQ* (interrupt request),
23,166, 168,173,176

NMI* (

Long word, 74,124, 126
Loop, 103, 105, 159

Machine code, 4

Machine cycle, 130-32 158,
168-69, 176

Machine cycle time, 24

Machine language, 44, 47, 50

Machine state, 25, 131

Machine state time, 24

Macroinstruction, 27, 183-85,
187

Macroinstruction detection,
182-83, 186-87
Macrostore, 17, 25, 27-28,
181-88
address space, 183-86
entry, 187
entry point table, 184-87
entry point vectors, 185-86
exit, 187-88
external, 185-86
internal, 17, 184, 186
macro-RAM, 27, 184, 186-87
macro-ROM, 27, 184~-87
memory, 17, 64, 183, 187
prototype mode, 186-87
standard mode, 186
Mainframe computer, 3-4, 10
Map select bit, 43
Mask, 30-31, 67, 81, 93, 166,
170, 172-75, 189
MSI (medium scale integration),

4,10

ble i

M y bus status codes, 127

request), 23, 166, 175
RESET#* (reset request), 23,
166, 174-75, 1
Interval/event timer, 13

Jump
conditional, 97
unconditional, 97, 99

Jump instructions, 62-63, 97-103
jump (JMP), 62-63, 99-101
jump on carry (JOC), 43, 101
jump on equal (JEQ), 31, 101
jump on less than arithmetic

(JLT), 101

jump on no carry (JNC), 101
jump on not equal (JNE), 101

Label, 47

LSI (large scale integration), 3-5

LED (light emitting diode), 10

Load function, 175

Logical address space, 123, 126,

135-36

Logic instructions, 64, 81-85
AND immediate (ANDI), 81
clear (CLR), 83
exclusive-OR (XOR), 81
invert (INV), 81
OR immediate (ORI), 81
setB;m:s corresponding (SOC),

set ones corresponding byte
(SOCB), 83

set to ones (SETO), 83

se;::rol corresponding (SZC),

set zeros corresponding by te
(SZCB), 84

Memory control lines, 20, 127-29
ALATCH (address latch), 20,
122, 128-32, 145,151-52,
157

DEN* (data enable), 133
MEM* (memory cycle), 20, 22,
36, 122, 128-30, 145, 147,

151, 157,174

RD* (read enable), 20, 122,
128, 131, 133, 145, 157,
174, 186

R /W* (read /write), 12
128-29 131,133, 145, 157,

READY (ready), 20, 131-32,
162

WE* (write enable), 20, 122,
}28—29. 131,133, 145, 174,

Memory cycle, 20, 122, 128~29,
131-32

Memory interface, 122-41
Memory map, 126, 171
Memory-mapped, 20
Memory mapper, 1a'r
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single-chip, 12-14
16-bit, 12-14
Microprocessor, 1, 5, 10, 12-14,
16-37, 41-47, 49, 64, 122,
126, 144. 166. 18]
MPU (microprocessor unit), 9-10,
22, 27-28
Minicomputer, 4~5, 10, 13, 47
Miss, 140
Mnemonic, 44, 99, 188
Multibit errors, 140
Multibit I/O operation, 145-46,

Multiplexed, 19, 38, 43, 122-283,
32,136

NMOS (N-channel MOS), 17
Nibble, 12
99000 family,

9980, 16

9995, 16-17, 28

99000, 1, 13, 16-36, 64, 70,
73, 89,'97,'126, 131, 140,
144, 159, 161-62, 168-71,
174-75

99105A, 17, 64, 183
99110A, 17,183,190

99000 interfaces,
address bus, 18-20
attached processor, 18, 23
data bus, 18-20
direct memory access (DMA),

, 23

interrupt, 18, 22-23, 165-90

memory control, 18, 20,
127-29

serial I/0, 18, 20~21, 27,
145-46, 155

status bus, 18, 22, 122-23,
128-29, 145, 148, 151, 157,
167,170, 181

99000 mhrnll nn:lmecf.ule,

25-32, 41-4

arithmetic lodc unit (ALU),
25, 35, 71

clock generator, 25

control ROM, 25, 34

error register (ER), 28, 32, 41,
43,174, 180-82, 190

execution of an instruction,
32-37

interrupt logie, 25, 27

macro-RAM, 27, 184, 186-87

macro-ROM, 27, 184-87

macrostore, 17, 25, 27-28,
1!1-88

Memory -t 25, 27, 34
17, 27-28, 32 MQ shift register, 25. 27
M:mmy-tmmemory rati 44 C), 25, 28,

Microcoded, 34, 183
Microcode sequence, 34-35
Microcomputer, 1, 4-5, 9-14, 16,
41-43, 47, 64, 126-26,
131-.‘]2 135 136, 140, 161,
175,179,181, 183
architecture, 9-10, 12
8-bit, 12-13
4-bit, 12-13
multichip, 10-12

44

31, 33, 35,41-43,61-63,

97,99, 112-13, 117, 122,

160-72, 179, 187-88, 190
software model, 41-49
status register (ST), 25, 28,

30-31, 41-43, 64, 69, 93,

88,117, 123, 169-75, 179,

187-89

user-accessible registers, 25,
28-32, 43
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99000 internal
architecture (cont.)

64, 66-67, 69, 117, 122,
169-72,175, 11'9. 187,190
ble interrupt, 22-

23,
166, 171, 1'!6
Nonmaskable interrupt vector,
127, 166

Nonprivileged mode, 31, 188
Nonvolatile, 10

Object code, 47

Odd-addressed boundary, 43

Opcode (operation code), 25, 44,
49-50, 55, 64, 181-83

Operand, 28-29, 35, 44-45, 47,
;g."bl. 94, 124, 126, 173,

Overflow condition, 190
Qverlaying, 137
Overlays, 137

Paged mode, 43. 123, 136-37
Parallel accessible 1/O ports, 148
Plnilﬁl; 1/O interface, 145~-46,

Parallel I/0 operation, 167-59
Parallel output bul c!cle. 157-59
Parameters, 114, 116, 179
Puﬂnh'nl. 10, 20—21 145, 147,

Phﬂi‘:ll Illdnll. 137
Pipelining, 3

Primary vtunle 8

Priority encoder, 168-69
Prio;i#g level, 28, 31, 167-68,

Privileged mode, 188-90
Privileged mode instructions,
188-90
Privileged mode violation
detection, 32, 43, 166, 179,
188, 190
PRV (privileged mode violation
error bit), 31-82. 43 1es,
179, 188, 180
, 2-8, J-ﬂ. 28, 42-43,47
C (program counter), 25, 28, 31,
33, 35, 41-43. 61-63, 97, 99,
112-13, 117, 122, 169-72,
179, wr~u. 190
PROM, 187
Programmer, 2, 41, 44, 64, 71, 81
Programming,

2,48
Prommummt 43,128,137
Program storage memory, 10, 28,

84-35, 41-42, 64, 97-98,
123, 135,187,170

RAM (random access read wri
) 9,11, 127, 132
135, 138, 140, 169, 185
Read cycle, 129-30, 132
ROliIa(;vulson]y memory), 9, 11,

Reset, 22-23, 166, 170-72,
174-75

SMOS (scaled MOS), 17
Secondary storage, 8
Segmentation, 44, 137
Serial accessible 1/0 ports, 148
Serial I/O interface, 18, 20~21,
27, 146-46, 155
IN (data input), 20-21, 145,
153, 156
ouT (dll-l output), 20-21, 145,
57

IOCLK* (innul/mltmn clock),
20-21, 145,152, 157-58, 162

nhigl;-l;l‘t arithmetic (SLA),
shift left lﬂthmeuc double
(SLAM), 89
shift right arithmetic (SRA),
85-87, 90
shift right arithmetic double
(SRAM), 89, 186
shift right circular (SRC), 86-87
shift right logical (SRL), 86-87
Sign bit, 124
Signed number, 124
Single-bit error, 138-39
Siu:rhit 1/O operation, 145-46,

53
Single-bit /0 ports, 145
Single step, 175
64-inputs serial I/O interface,

153-55
64-outputs serial I/O interface,
165=-567

Slow memory interface, 131-32
881 ignnl scale integration), 3-4,

Soft error, 138

Software interrupt, 166, 171, 179

Software model, 41-49

Sort program, 108-12

Source code, 44

Source operand, 33, 35, 42, 45,
47, 51-55, 87, 711-72, 74,
76-178, 81, B4, 94-95,113,
117,128

Source program, 44-47

Source register, 28-31, 35, 54

Special-purpose computer, 4-5,
9,12-13

Static memory subsystem, 135

Status, 30-31, 43, 72, 94-95, 101

AF (;df-hmeﬁc fault), 43, 72,

A> (arithmetic greater than),

94-05, 98, 101, 146
L> (logical greater than), 43,
72, 94-95, 101
OP (odd parity), 43, 94-85, 101
Status bus lines (BST-BST), 18,

Index

22, 122-23, 128-29, 145,
148, 151, 157, 167, 170, 181
ST (status register), 25, 28,
30-31, 41-43, 64, 69, 93
98, 111’ 123, 160-15‘ 179,
187-89
Straight-line program, 97
Subroutine, 30, 11 2—14 11¢—11
"handling

112-19
branch (B), 112-13, 116
branch and link (BL), 30,
112-13,116
branch and link with workspace
(ELWP). 112-13, 117-18,
179

return workspace (RTWP),
112-13,117-18, 119,171,
179, 187-88
Supervi:or mode, 188

Tag, 47, 99

Transparent octal latches, 132

Two-word instruction, 66, 128,
186

Unidirectional bus, 20
UART (universal asynchronous
receiver /transmitter), 13
User-accessible registers, 25,
28-32, 48
ER (error register), 28, 32, 41,
43,171, 180-82, 190
PC (program counter), 25, 28,
31,33, 41-43, 61-63, 97,99,
112-13, 117, 122, 169-72,
179, 187-88, 190
ST (status register), 25, 28,
30-31, 41-43, 64, 69, 93,
98, 117, 123, 169-75, 179,
187-89
WP (workspace pointer), 25,
28-30, 33, 41-43, 49, 54, 64,
117, 122 IGQ—T2
175, 179 187, 190
User mode, 188-89
User[supervisor system
environment, 188, 190

Wait states, 131-32, 140, 150,
162

Word, 48, 57, 67, 81, 84, 93,
122—25 145-47 150 157

anl ;ddnst boundary, 42

‘Workspace, 29, 36-37, 42, 67,
69, 113, 117, 169-71, 179,
186-87

‘WP (workspace pointer), 25,
28-30, 33, 41-43, 49, 54, 64,

29-30, 33,
42, 44-46, 48, 50-61 58-54,
58, 60, 64, 67, 72, 78, B1,
85-57. 93—91. 96,114,122,
128,173,189
Write cycle, 180-32
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