TEXAS INSTRUMENTS

§ ~ TM 990/302
i Software Development
' Module User’s Guide

T B R B R SRR

@ :
e MICROPROCESSOR SERIES

June 1980

o

e 9

Paragraph

RIS T T N T M W — p— Y
oNOORWN=

2.1

2.2
2.3
2.3:.1
23.2
2.3.3
2.33.1

2332
2333
2334
2335
234
235
2.4
2.5

2.6

ra
2.743
2.7.2
273

3.1
3.2
3.3
34
3.4.1
34.2
3.4.2.1
3422
35
3.5.1
35.2

TABLE OF CONTENTS

Title Page
SECTION I. INTRODUCTION

GEIIETAL. ..o cha ol ol v ubing b v B oS e Bt 5 o s R B TS L s sl 1-1
TR e T T RS S e S e L A S 1-4
Typical System OpBraton = o o T L v siee tossonsssnasos 1-4
Memory Areas ReloCEIel L Bt s B o s e e e el e e i e brares o 1-7
SHBEINCAONS. vniionas somvvs o ss i s b nddamnssnsonmss TETNOMEL, & o+ o v 1-7
Applicable DOcUmMents .. . c...ansdbtitnnbonssasnen sinouipeiaislonasy = o 1-7
Command Format Sypta: ... siitiasel Bae it wietius e et ® o v cns 1-7
Character Changes Using Control Hand Control FKeysc.c.ovvvun... 1-8

SECTION Il INSTALLATION AND OPERATION

(51 ¢ | T S R G T S e & S L o s 21
UNPBCKING o covvivivs cissimimsndos i e s s JEIDRMILETE TR SIS A A 21
Istallation. sSftedil sineie ol campaicams it R Al o1 2-1
Minimum ConfIGUratioNc...«osoessssome st SEEAGAEL SRR o 241
Connect POWerSUPPIY:liongs s diiiiaalalin Co e i s v 1 2-3
Change RAM Memory Mapping and Install System PCBoards 2-3
Memory Mapping Change on Microcomputer Boardsovveeuenn.. 2-3
Preparing the TM 990/100M MicrocomputerBoardc.coouon.. 2-5
Preparing the TM 990/101M MicrocomputerBoardc... .. 2-8
Install the Microcomputer Board intoCard Cagec.oevvvennnennns 2-8
SetUpandinstall TMB90/302'Boartd ...covmsisicmb i it et e 2-8
Attach Terminal, Run Preliminary System Checkc.oovuverrenninenns 29
Connect the Tape Recorders tothe TM990/302 oviininneenennennnnns 29
Physical Device Numbers (DEVINOS)cviirinrvnernnsneeneenneennenns 2-12
System Initialization and Monitor Call. ... s s S A T e 2-13
0T TSR T T O . 0TS Sl NI T L SR, e =13
Recorder/Player Protoca] i al i aa. ci iiaavens s e 2-14
Setting Up for a Write Operation (Two-Cassette Operation) 2-14
Setting Up for a Read Operation (Two-Cassette Operation) 2-14
One-Cassette Operation covivvevivennsnnns e, TR e 2-15

SECTION IIl. TEXT EDITOR

G 2T L | i = e . £ Tl R YRR S B, Lo o) SN 3-1
SSorn CORfGUIBION. - & (a7 0k, vae calvs maie bl e s en sl s s es s el 3-1
CORSIderations . T o L s o s S e AT e 3-1
Text Editor Call and Special Key FUNCHIONScoiiiiueiinneannnnnnnnns 3-2
TextEdRorCall i ainde s rins it e s sy e 3-2
SpacialKey FUREHION . . iudsvsvmmvsirirdiintss o i e i I s e 3-1
Use Tab Function to Space Between Source Fieldsccovvuunn. 3-2
Use Control H and F Commands to Correct Charactersoovvuenunns 3-3
ComMands- & ot tantoa ot i s St SUSETIEErRon T Dl s 3-3
Get Source Lines Commandi@)E - 0 S i iy o S e 3-3
PrintSource Lines Commandi(R) - . .. o 0 a m L L G B I vt 3-4

3.53
3.5.3.1
3.53.2
354
355
35.6
3.5.7
3.6

3.7
3.8

4.1
4.2
43
4.3.1
4.3.2
433
4.3.3.1
4332
4.4
4.4.1
442
4-43
444
445
4.4.6
44,7
4.5
4.6
4.7
48
4.9
4.10

5.1
52
53
54
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2

InSErtLines SoUrceECOMMBRE v i e s S R e R 3-4
T o T - 2] o L S e O e I e e T e e T e o e 3-6
EXamples <. .ovonomco o - SIMTTMDO BB HBAT < o rnon waannsn Wne i nw i Beas v a St 3-6
Delete Source LinesCommand (D)vuurrmmmnnreeeerrrernennnnnneens 3-9
Resequence Lines Beginningat New Value (R)cccvviiiiiiinininnnans 3-10
Keep (Save) Edited Source LinesCommand (K)coiiiiiiiiiiininnnnn 3-11
QuitTextEditing Command{Q) moriiiica sl b antniasan aa e = ikls sas s aam 3-11
Error Codes tor T et EQtDr b oo o o raots sl efo i a2 Kot et s e G B e e e 3-12
Data Backip on'iCassata. o o i s e T s e S A e R T T 3-14
Miiltifile Cassettes s sii sz inrtsentttnten i canntasnws cuns s e AE O 3-14

(SONOTELS 5o loe stwre s et siawiossi sl srers-dials s Wi v AT R T e SRS AT (D aTeeg e v oo 4-1
CONSIAErationS: -... vxiv i s nem s em s ek e RIS R e e 4-2
SymbolicAssembler. Call and Operation - ... 0 0 Sl i s e e s v e nas 4-4
Systam Set-Up . 2ondl s L ane S prso s A M BRI v v s 4-4
Symbolic Assamblet Call'- ... i puinsnmansme iy gt i 4-4
Oneand Two CassetteOperation .. i Sliin Si i itamrontimm cowiivs waam i s atas 4-5
TWO-CASSeta OPOrBLION | « . inlasiaiesas sl @hisie s/ s s s v a s e 4% 4-6
One-Cassells OParation =iiueisiiesism svsensinmm st s do st s o mve 4-6
Assembly LIStNG FOIMAL . - ..o v sieis soa et st s DRI IRI e v sy 4-10
Assembly language Source Statement Number 4-11
LOCBHOMCOURTIBES o viersw merowrwsrepmatstohomorameairsie DRI E AN) NI vown ot 4-11
ASSembled ObJOCtGOUB. « 1. o cwrswaameteins oSt a0, SRR i T e e s sraiale 4-11
Label Fiald st e I D R i A A et ol s s 4-1
Op CadeField: .. . 2 e e P A s S I e T I s it 4-11
Operand Field juumsvemmassins il s e e s i sl s s ol 4-1
Comment Field. ...:.sixsiiesmaimssvanmveenalas ot st R ae v o o 1 s 4-11
TG GRS S v - il e TR G S s AT e o vis v S 4-12
Labele. ... oosimeaissiatiesoasiiides RO G Y s v B i L A v oo L 4-12
Mathematical EXPressiong8amy aotmem ot memebned casdl M ihel il v b 4-12
Object Code ...« SO SN BT et (D e SN TR N SO Tt iardare o omion a8 4-12
EITOTS ' . uiviuiciaiini s simisioninni s sium i bt i o T o Mol e A A 9300 s o1 e S a7 o e 4-12
Assembly of Example Program .. us. s snkissshb st s sl anishisie s s sias 4-14

SECTION V. RELOCATING LOADER PROGRAM

Ganeralt AT e e SR s o el o8t Lt e 5-1
SYstam CoNfIGUTAHION' . v sisnmaiin e ahos S O o S e R, i e v 5-1
CONBIABTATIONE: v o cae s ramsiari v olaralerarsnyesis sarate ‘e mieis &7a0s 28141) il ol Ml dah S ERc(ee it 650 5-1
Loader Program Call and OperatiOm T 2L 5 in e & e eisua < /sssls s alsiaials sae/ats sao78)a 5-2
EXBINPIES <o oo o el s ia = R s/ io Saa o ST i 5 aa R o B e el T 5-3
EerOrCOtOS: 155050 a0we e alhlsalalaraa e sialeral@laiin sl ainssalsralie e R MR P 4 s ol 5-4

€713 =] - | OSBRI T« L w1 T 6-1
Systemy CODAGURALION: . i » . oiowmmmmionmsm s s SRRt MDA (ool 6-1
CONSIdBrationNSs: .. iR ridinsh e A Sl AT s b T o A e acs s 4 s lad 6-2
Program Debiggen Galliyye s e Tt i v vt s i s a1, o ARias s o7 a8 6-2
Debug Program CommBands: .o seas s s dyai v sl e iaait sesealsie e a5 6-2
Execute Program CommandilEX) . . vaitn e es b st hlbiasss o ol 6-2
Inspect/Change CRU Command (IC) < -5i Sasrini s s st na i rvovass 6-2

e

6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8

7.1

7.2

7.3

7.4

75
751
715.2
7.53
7.6
7.6.1
7.6.2
7.6.2.1
7.6.2.2
7.6.3
7.6.3.1
7.6.3.2
7.6.4
7.6.4.1
7.6.4.2

8.1
8.2
8.3

9
9.2
9.3
94
95

10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
1034

Inspect/Change Memory Command (IM) i
Inspect/Change Hardware Registers (IR) ccociiiiiiiiiiiiiianinnnnns
Inspect/Change Workspace (Software) Register Comamand (IW)
Run Program for specified Number of Instructions (RU)cocininnnn..
Set Breakpoint Command (SB)" fea seitdil Sl el D adansiasint s oans
Software Trace CommandiST) s i ciassmme s oaeis s ialicras st v am naaiis

SECTION VII. EPROM PROGRAMMER

General - .o s emen s SOIEYANAT0.L DRI S, D d LI MO SR G e
Syeiom ConfgUration. | . . .xwwsrmmssmsncenmms e nms SIS MRS BT, . «ove
CORNBIGOFBEIDIE 1 a1 5 e o o it o o i v e o i o el BTV oD O AT T s ooy
EPROM Erasure ProCeadUre . - snuiseyismiss S aten st sats s et s e o i:svots
SYSIOMSOTUD « einnmaesis sl sialaim sl ivemleioe e e s T e s ah s et o1 5 v
EPROM Personality Card - ..oiviasnimmimmnsmmieis s Mans it etls seies casles sl s weive
Insert PROM into Personality Card, Designate PROM Model
Personality CardLED'Sunmnonmansimssioemmniose = diiiaroseagmens] doibnl) |
ComMmENdS <5y ettt nais sy i sk e L AT N oo
Program the EPROM Command (PP)vvviiereeneiiinnnnnenneneeeenns
Compare EPROM Contents Command (CE) |« wsieicsiais s saisa oo siaiia s mine s
FOMMBE . oicon: icies s o e oo mm o Doy A et 7 i, % a1 s o sy
EXBIMDIEB: o Gt aaloesne (s siss et 8 eldaata sl s ass arers as A s le oot ata aela e e WV ae o Ve o s e a s
Read EPROM Contents into Memory Command (RE)coiiiiiiinn..
PORMBYL i p e s s wen e wo s S a s e o et s R OIS v - Sy
¥ C (g 1] oL [RS SOOI . o | . " LSO 0§
Verify EPROM Areals Erased Command (VE)cooiiiiiiiiiiiiiiiinnnn
FOITIIEE . vooiosooimmnmiacatosis! siarsinioelatmorilase sTevata sl ols uea i atssaiacasa sl SRR Po Rk (E0ath 5 e ou n g s
EXAMPIOS oo riainie slavaiis sate nelmers s it s sis e e e o e ST eA e s oM i o e

T m e s L e e e ooy St S G oty MO gy S e s, - e S A
Te a7 | s e — I . T e T T ey e e T
EXAMDPIOS . rros ittt e, et e W e e

SECTION IX. SETTING BAUD RATE AT SECOND EIA PORT

(e T = i | A B I I . o e BB o e A N P e T S e e T e e
CONBIAOTBLIONS. ol vo s mons ie i s e e e O NS e i e TS e o
EOMMOEY. o nm e e e I 6 e v S R T e b s e s e
ERETIOIE - . s e O Rt oo a5 a0 e e e e T Ul ol N PSS
Error Code

..

GENOTEL: 50 v evams s T T e L s B ey e e
Considerations’. ... ARy S R O S e T RO R T s o
UHIEEE . I R e S AN R o o I e R I v
TM 990/302 Return to System Softwarecoviiiiiiiiiiinneininnnns
Decimal ASCIl to Binary CONVersion coiiiieeeinunnrnianeeeeennnns
Hexadecimal ASCIll to Binary Conversionccoviiiiiiniinnnrennennnnn
Binary 1o Decimal ASCHCONVErSIONo s catahlid A S e s e we s e

10.3.5
10.3.6
10.3.7
10.3.8
10.3.9

11.1
11.2
T2
11.2.2
1123
11.2.4
11.2.5
11.2.6
11.3
11.4
115

Binary to Hexadecimal ASCIHIConversioncoveviricreenniianiinnnene, 10-2

Echo Characteronthe Primary EIAPOrtcciiiiiiiiiieniiiinnnnnnnnnas 10-3
Output a Character tothe Primary EIAPort ooiiiiiiiiiiiiienins 10-3
Output a Message tothe Primary EIAPortoiiiiiiiiiianiinnnn. 10-3
Input up to 80 Characters from Primary EIAPortcoiiiiiiniiennnnn, 10-4

SECTION XI. UPLINK BETWEEN TM 990/302 AND HOST COMPUTER

GENBTA) il s e e T A Dl (TR e R i e ra Al e el et 1141
System Configuration and Execution Considerationsc.ccciii.ae. 11-2
TM:99D/50B CADIB:. < v emsissmismmimaimmsimp s manios « BT S (ST + s v 11-2
HoBt COmMPIEEEEINCANTL « oo nimincmemmmmmmmeisss o mtos ST AR G TIEN o we s 11-2
TN 990/I0TM BARUARELE. ... < 5500w mioinimiss o LSO S AL S P TR oo e e 11-2
HOSt COMDATOT SOTWETS. . . o i b smioms s s wisnan o NSRS TRBEE RS 56 e 11-2
Returnto ProgramGall .oises o smiisine e b i a Rt is SR ot 4 o5 o1 11-2
Return to Monitor i b il ains Sl cebh S0 e s st s i o e e s s S v s s s 11-2
Uplink ProgramCall ocesansvscisioniasissisiss s @iule bl apmmpaaios v o o 11-3
TOrMINAINOUE. © o e.coie e minisioimme s im s s wisiseiee warae elom e o AL AT Tas fata als 151y 11-3
LOAAMOTG! - . oviiewmommmmmmismmmmsmes v RSB IN e AR S TR e s e 11-6
APPENDICES

APPENDIX A Wiring Teletype Model 3320/5JE for TM 990/10XM

APPENDIX B EIA RS-232-C Cabling

APPENDIX C ASCII Code

APPENDIX D Binary, Decimal, and Hexadecimal Numbering

APPENDIX E Error Codes

APPENDIX F Assembler Directives

LIST OF ILLUSTRATIONS

Figure No. Title Page
11 TM 990/302 Software DevelopmentBoardccovvvevnnvinenninennnenann 1-2
1-2 Software Development SystemDiagramcciiinirinnnenranarrerianses 1-3
1-3 Typical Software Development Sequencecocoiireiunnnennennnns 1-6
2-1 Software Development System Configurationccociiiiiiiiiaanins 2-2
2-2 Power Connections to Software Development Systemccooiiiianan. 24
2-3 Memory Configuration for the Software Development System 2-5
24 Address ROM Changeout at TM 990/100M Board ccoviiiiinniennnnnnn 2-6
2-5 System Cabling Between Boards and Peripheralscoooviinonn 2-10
31 SourcoStatamentEields) . .. cunssene - Db IR, InmsoCE o il . .. - 4 35

Vi

4-1
4-2
4-3

4-5

7-1
7-2

7-4

11-1
11-2
11-3
11-4

Table No.
1-1

2-1
2-2
2-3
2-4
2-5
2-6
2-7

4-1
4-2

7-1
7-2

SYMbDIIE ASSEIBIBE o i s sesilimsm e s e s s oo g aara Fels e |sval 7sarela allasiaase 4-2
Two-Pass Assambler DRETatiON . i cirrveinreaisrs consarisammes o s v s 4-3
Flow Diagram of One-Cassette Operationccciiniiiiiiainnnnnnnnns 4-9
ey oy R U T 1 g o Tt 0 1 1 B L S P Ui e YO e S S 4-10
Assembly Listing of Example Programccciiiiiiiiiiiiiiiiieinnnn, 4-14
Relocating Loader Block Iagram cociorie o oisis i esioisinieivie e suis sioin)aiote a) s siare aioisiiia 5-2
Typical EPROM Programming Configurationcciiiinimneninenen 7-3
A O O Card e e i R et o Ao whiters ot 2t e Tt aly oo i o 7-4
In-Line and Parallel EPROM Programmingcooiiiiniiiinennninannnnnn 7-7
Data Transfer In Parallel ProgrammingModeccoiiiiiiiiriiinnnnnnns 7-9
System Configurationfor Uplink Program. . =i s stvdimssenii domseaionams s v 11-1
Uplink Program Execution, T1990/10 as Host Computerccoiiivnninn 11-4
Uplink Program Execution, T1990/4 as Host Computercociivvunnn 11-5
Transferring Object In The Load Mode OnTI990/4oviieiinnnnannnnnnnns 11-6
LIST OF TABLES

Title Page
Command SYntaX CONVENEIONS ..« v v owisoieinismisisimsios siseaiisissioian fise s es sassin s sl 1-8
Jumper Connections for the TM990/100M Boardccoiiiiiiinnnnnenns 2-7
Jumper Connections forthe TM 990/101MBoard cciiiinininnennnn 2-7
SJumper Connections onthe TM990/302Board cciviiiiinnniinnnnnnns 2-8
Wait States Required for Memory Speed and System Clock c.c.0... 2-8
Available Terminal-MicrocomputerCablesccciiiiiiirnrininnrnnnans 2-9
Device Locations/ConnectionsinSystemccevveereniiniiannraccenans 2-12
D N N O DB G Ty E O™ e 101 5 oot e e A S T e o819 TS0 2-12
Label Storage Vs. System RAM (Bytes)oiiiiiiiiiiiiiiiiinannnnnnns 4-4
AssemblerErrorCodesc.ooocevieanesia T A S ST SR 4-13
Parsonality Card ChATBCIBRISIIEE ik viisissslars weveiaalstaaaerss/oialalsmislas s siay s ale n 7-3
Jumper Placementon PersonalityCardccoiivviviiininninninenninnns o

vii

1.1

SECTION 1
INTRODUCTION

GENERAL

The TM 990/302 Software Development Board (SDB), used with a TM 990/10X micro-
computer board, provides the basic software development utilities needed to develop
software for a TM 990 microcomputer system. This manual provides information on the
installation as well as the operation of the TM 990/302, shown in Figure 1-1. A software
development system (Figure 1-2) consists of the following:

TM 990/302 Software Development Board

TM 990/100M or TM 990/101M microcomputer
Power supply (such as the TM 990/518)

Data terminal (EIA or TTY interface)

Board interface (such as the TM 990/510 chassis)

One or two audio cassette recorder/players for storage of source or object records
(it is possible to operate the system with one recorder)

Proper cabling.

Possible expansion memory (TM 990/201 or TM 990/206)

Equipment configurations and setup are explained in Section 2 of this manual. Software
utilities provided in EPROM on the TM 990/302 board include:

Text Editor (Section 3)

Symbolic Assembler (Section 4)
Relocating Loader (Section 5)
Debugger (Section 6)

EPROM Programmer (Section 7)
Memory Dump (Section 8)
Second EIA Baud Rate (Section 9)
User Utility Calls (Section 10)

Downloading Object Program From Host Computer To TM 990/302 (Section 11)

111

LED AT CRU ADDRESS 170616

LIGHTS WHILE EPROM

PROGRAMMER IS EXECUTING

CONNECTOR P3

CONNECTOR P2

JUMPERS

a
50
Q-
[ol®]
=z
-

- WAIT/
NO WAIT
. JUMPERS

~ela

e

ATHD
‘‘‘‘‘‘‘‘‘‘

0L '066WL

_ r. O

: G | e
- o B TN, — 'S

it

1-2

SOCKET XU12WITH
DECODE PROM FOR

SWITCH S1

I

(il

FOR MEMORY
MAPPING

TM 990/100M BOARD

CONNECTOR P1

Figure 1-1. TM 990/302 Software Development Board

CASSETTE
RECORDER/
PLAYER TO
CONTAIN
SOURCE AND

OBJECT FILES

TERMINAL FOR

COMMAND INPUT,
SOURCE LISTING,
ERRORS

POWER SUPPLY
+5V, +12V,
12v,
+30 TO +50V
~ v
_____ =0
| SDBMONITOR |
I IN EPROM |
I . s o =
T™ 990/302 TM 990/10X
SOFTWARE MICROCOMPUTER
DEVELOPMENT BOARD
BOARD (CPU)
i A e LSS N R I A 1
1 RAM : l RAM |
e Y T P - T N T e il

&y

EPROM PROGRAMMER
PERSONALITY CARD
FOR TMS 2708, TMS

2716, TMS 2508, TMS 2516,

TMS 2632
-,
(> OPTIONAL
SECOND CASSETTE
RECORDER/PLAYER

Figure 1-2. Software Development System Diagram

1-3

1.2 MANUAL ORGANIZATION

To facilitate understanding of the software development tools provided by the TM 990/302
system, an example program is used in the Text Editing (Section 3), Symbolic Assembler
(Section 4), Relocating Loader (Section 5), Debugging (Section 6), and EPROM Programming
(Section 7) sections of this manual. This program, when executed, blinks the EPROM
programming LED on the TM 990/302 board and personality card. These LED’s are noted in
Figure 1-1. This manual is divided into the following sections:

Section 1: Introduction to the TM 990/302 software development system.
Section 2: Installation and operation of the TM 990/302 board within a system.

Section 3: Text Editor used to create initial source program and input changes to the
program.

Section 4: Symbolic Assembler used to assemble source programs; symbolic
addresses identified by 1 to 4 character labels are resolved by this two-pass
assembler.

Section 5: This section covers a relocating loader which resolves the relocation,
determines the load length, and loads object into memory.

Section 6: Debug package which controls and monitors the program execution and
allows examining of the program by displaying the contents of hardware register
and memory through various debugging commands.

Section 7: EPROM Programmer which programs EPROMs with final object code
developed by this system.

Section 8: Memory dump routine dumps the memory contents in standard 990
object code form onto cassette.

Section 9: Set up baud rate command for second EIA port on TM 990/101M board.
Section 10: User utility calls. Some useful user callable routines are listed.
Section 11: Downloading object programs from host computer to TM 990/302.

Appendices containing auxiliary information such as cabling, object format,
numbering systems, ASCII code, glossary of terms, etc.

1.3 TYPICAL SYSTEM OPERATION

A flowchart depicting typical system operation with the TM 990/302 Software Development
Board is shown in Figure 1-3. Operation steps include:

(1)

(2)

Initialize System. This includes setting up the system as described in Section 2:
system connections, powerup, cassette ready, system reset, and call-up utilities.

Text Editing. The Text Editor allows creation of source programs as well as up-
dating, insertion, or deletion of source lines. After developing the source programs,

1-4

(3)

(4)

(5)

(6)

(7)

in TMS 9900 assembly language the Text Editor writes the developed programs to
cassette upon command. Programming is made easier by the use of symbolic
labels and 11 assembler directives which are explained in Chapter 4 and Appendix
B

Assemble Source Program. After generating a source program of assembly
language statements, the Symbolic Assembler is called to assemble the program
into object code. The assembler will provide an assembly listing, with errors noted,
and a cassette of assembled code called object. In the call to the assembler, the user
can specify what options are desired from the assembly such as (1) listing to check
source code, or (2) an object code, (3) or both. The SDB program calls allow
flexibility for the user in configuring his system. If a particular device in the system is
not desired (such as the object cassette recorder when a listing-only is desired), that
device can be assigned to “dummy” during SDB program call; thus “deleting"” it
from the system configuration. One feature of the assembler is that if an error is
found, no-op instructions (ignore this line) are substituted for the object code in
question. This will permit complete assembly of the program with space provided
for later updating the object. Assembler object is not relocatable.

Load Object Code. When the object code has been assembled by the Symbolic
Assembler, it can be loaded into memory by the Relocating Loader. Even though a
program can be assembled as if it was to be loaded into memory at memory
address (M.A.) 000016, the Relocating Loader will load the program where directed
in memory, and resolve any conflicts in addressing. These conflicts occur when
code is assembled for loading at one address but is loaded at a different address.

Debug the Program. Debugging the program means to run the program in a
controlled environment, checking on its performance at selected places. This could
mean running the program until a specific instruction is executed, then stopping the
program to inspect various memory locations or hardware registers. This same
check could be made after running the program for a limited number of
instructions. If an error is found in the program, the user can substitute different
values in memory, changing instructions or data values, and re-execute the
program again, checking for proper operation. Equipped with an assembler listing
showing memory locations, the user can relate machine instructions and datato the
assembled source. He can also check and change workspace register contents, CRU
values, and hardware registers (Program Counter, Workspace Register, and Status
Register).

Further Editing/Loading/Debugging. If the program needs further changes, the
source program can be brought in by the Text Editor to incorporate changes,
reassemble, and then reloaded into memory and executed under the Debugger.
This cycle can be run until the user is satisfied with the results.

Program the EPROM. When satisfied with program performance, the object
program can be reloaded into memory and then programmed onto one of several
types of eraseable programmable read-only memories (EPROMS). The EPROM can
then be placed in the user’s system (“target” sytem) and executed. “Personality”’
cards are provided with the TM 990/302 SDB to accommodate a variety of EPROM
types. These cards plug into connector P2 on the left side of the SDB (left side facing
the board in a card cage). One personality card has a plug for insertion of a
TMS 2708 or TMS 2716 PROMs, the other card can accommodate the TMS 2508 or
TMS 2516 or TMS 2532 EPROM's.

1-5

START

TEXT
EDITOR

INITIAL INPUT,
| EDITING

SOURCE TAPE

SOURCE INPUT,

ASSEMBLER

OBJECT OUTPUT

YES
ERRORS

?

NO

LISTING,
ERRORS

RELOCATING
LOADER

OBJECT INPUT

DEBUGGING
PROGRAM

INTERACTIVE
CONTROL OF
EXECUTION

PROGRAM
WORK
?

SAVE OBJECT
ON CASSETTE

PROGRAM
EPROM

OBJECT INPUT

PLACE EPROM
IN TARGET
SYSTEM

Figure 1-3. Typical Software Development Sequence

L]

14

15

1.6

1.7

MEMORY AREAS RELOCATED

Position of random access memory (RAM) and erasable programmable memory (EPROM) on
the microcomputer boards will be relocated at different addresses than as shipped from the
factory. To accomplish this, the TM 990/100M board requires a new address-decode PROM
while the TM 990/101M board requires several jumper placements (these are described in
detail in Section 2). EPROM on the microcomputer board is available for user generated

application software, but is not included in the SDB system memory mapping.

SPECIFICATIONS

Power:

The following are power requirements for the different boards in the system:

+5V —12V +12V
TM 990/302 1.5A 50 mA 50 mA
TM 990/100M 14A 0.1A 0.2A
TM 990/101M 1.7A 0.1A 0.3A

*Required only for EPROM programmer on TM 990/302

Temperature range: 0to 55°C

Humidity: Up to 95%, noncondensing

APPLICABLE DOCUMENTS

TM 990/100M Microcomputer User’s Guide

® TM990/101M Microcomputer User's Guide

® TMS 9900 Microprocessor Data Manual

e TMS 9901 Programmable Interface Data Manual

® TMS 9902 Asynchronous Communication Controller

® The MOS Memory Data Book For Design Engineers
COMMAND FORMAT SYNTAX

Throughout this manual, formats for the different SDB commands are provided in
abbreviated form as well as in the form of examples. Table 1-1 defines the syntax used in the

abbreviated command formats.

1-7

35-55V

0.1 A*
0
0

TABLE 1-1. COMMAND SYNTAX CONVENTIONS

SYMBOL EXPLANATION

<> item to be supplied by the user

[l Optional item(s) in brackets may be included or excluded at the user’s

discretion
il Choose one of several optional items from the items in brackets
(CR) Carriage return
A Space bar
> Hexadecimal value

CHARACTER CHANGES USING CONTROL H AND CONTROL F KEYS

In communicating with the SDB monitor, errors to keyboard commands can be corrected
before the user enters a carriage return to execute the command. To correct one or more
keystrokes entered, use the CONTROL H key (press the CONTROL key, then the H key)to
backspace to the key entry in error. Then press the correct key entry. If valid key entries were
backed over during this operation, use the CONTROL F (press the CONTROL key, then the F
key) to forward space over correct entries (an alternate method would be to repeat the
keystrokes that were backspaced over).

1-8

SECTION 2
INSTALLATION AND OPERATION

21 GENERAL

This section contains information on installing the TM 990/302 and general operation of the
system. Figure 2-1 is a diagram showing system hookup.

22 UNPACKING

Check the carton for any outside breakage. If any is found, report this to your supplier or
carrier. If signing for receipt of carton from a carrier, note any carton breakage on the receipt
paperwork. Remove the TM 990/302 board from its carton and packing. Examine the board for
any discrepancies; if found, report these to your supplier or distributor.

2.3 INSTALLATION
2.3.1 MINIMUM CONFIGURATION
The minimum system configuration for the TM 990/302 should include the following:
e TM990/302 Software Development Board

e TM 990/100M or TM 990/101M microcomputer, fully populated with RAM
(TMS 4042’s on the TM 990/100M, TMS 4045's on the TM 990/101M)

e Card cage (TM 990/510 or TM 990/520 or equivalent)
® Power Supply (TM 990/518 or equivalent)

® Dataterminal such as a:
— Decwriter ||
— Hazeltine 1500 series
— Lear Siegler ADM-1, ADM-2, or ADM-3
—Soroc 1Q 120
— Teletype model 3320 5JE
— Texas Instruments models 733 KSR* or 743 KSR*

® Cassette Recorder/Players (two preferred) of the following recommended models:
—General Electric 3-5121B
—Panasonic RQ-413 AS
—Realistic CTR-40 (Radio Shack)
—Realistic CTR-41 (Radio Shack)
—Sears 799.21683700
—Sharp RD-610
CAUTION

Operation with models other than those above may yield unreliable
data transfers or cause damage to the TM 990/302 control relay due to
excessive inrush currents. Use of the TM 990/302 with other than the
above tape units voids the factory warranty. Subsection 2.3.7 covers
tape unit checkout.

*Trademark of Texas Instruments Incorporated 2.1

® Cassette tapes of the following recommended brands:
—Verbatim R300H
—~Radio Shack Digital Tape C20-260301
—Texas Instruments Digital Tape 360333-0001

MICROCOMPUTER CABLE WITH
BOARD %%F990/518 ™ 990/518A

POWER SUPPLY POWER SUPPLY

TM 990/302 BOARD

™™ 990/508
MICROCOMPUTER TO CABLE

TERMINAL CABLE

Figure 2-1. Software Development System Configuration

22

2.3.2

233

2331

CONNECT POWER SUPPLY

Connect the TM 990/518 power supply to the TM 990/5XX card cage as shown in Figure 2-2(a).
Verify correct voltages at the chassis rear pane! connections before installing any boards into
the chassis.

Do not connect EPROM programming power unless object is in memory, ready to be
programmed onto the EPROM. There are two alternate ways to attach EPROM programming
power to the TM 990/302 board. Attach the 35V to 55V EPROM power at the power supply
terminal [Figure 2-2(b)] or at connector P2 as follows:

® Atthe power supply terminal on the TM 990/302 board, attach [Figure 2-2(b)]:
1. TB1-1to ground
2. TB1-2 to EPROM programming voltage source
3. TB1-3and TB1-4 are unconnected
e or, at connector P2 on the TM 990/302 board, attach [see Figure 2-2(c)]:
1. Pin 20 to voltage source
2. Pin1,3,5,0or7toground.
NOTE

Disconnect the EPROM power if the EPROM programmer is not going to be used.
CAUTIONS

1. Do not touch the board with EPROM programming voltage
applied.

2. Do not read from cassettes while EPROM voltage is connected
and an EPROM is in the personality card attached to the
TM 990/302.

CHANGE RAM MEMORY MAPPING AND INSTALL SYSTEM PC BOARDS
Memory Mapping Change on Microcomputer Boards

The TM 990/302 Software Development Board software does not utilize the standard memory
adressing on the TM 990/10X microcomputer boards. On these boards, standard memory
configuration has random access memory (RAM) located in the highest memory addresses
while erasable read-only memory (EPROM) begins at addresses 000016. The SDB software
requires an opposite configuration with RAM in lower memory and the EPROM on the
microcomputer board disabled. The SDB system software will be resident in upper memory
on the TM 990/302 board. Figure 2-3 depicts the memory map of the TM 990/302 operating
system using both boards. It is assumed that:

e Both microcomputer boards are fully populated with RAM.
® Onboard RAM on the TM 990/100M is mapped from M.A. 0000 to 03FF1g.

® Onboard RAM on the TM 990/101M is mapped from M.A. 0000 to OFFF16.

2-3

+6V
~12v
(EPROM PROGRAMMING) 45V
COMMON —\\

GROUND

—-15V

+16V

—12v

+12V

+5V
PRES. B
INT1. B

tejike) (e o)

RESTART. B
GROUND

10

O

TM 990/510/520 CHASSIS TM 990/518 POWER SUPPLY

a) Power Connections to TM 990/510/520 Card Cage
from TM 990/518 Power Supply

CONNECTOR P2

CONNP53°T°F' L P2—20 (EPROM VOLTAGE)
TB1-2 EITHER P2-1, P2-3, P2--5, OR
(EPROM VOLTAGE) i Lk b
TB1-1 (GROUND)
b) EPROM Programming Power Connections to c) EPROM Programming Power Connections to
Terminal TB1 of TM 990/302 Board Connector P2 of TM 990/302 Board

NOTE: User can choose which method of attaching EPROM programming voltage (b or c) is preferred.

Figure 2-2. Power Connections To The TM 990/302 Board

24

TM™ 990/100M

TM 990/101M
- A e MICRO- 016 p777 "am 77771) MICROCOMPUTER
R 0016 BOARD
1000 // IS S COMPUTER
16 //fxfy { BOARD 100016 ////////)
/ RAM RAM
200015 200016 LL
OFFBOARD OFFBOARD
EXPANSION EXPANSION
{ MEMORY Z \ ™ 990/302 MEMORY Z , T™ 990/302
BOARD (BOARD
E00016 rrrr 7777777 E00016 |» 777777777,
EPROM EPROM
EPROM EPROM
FFFF16 / FFFF16 /

2332

(a) USING TM 990/101M (b) USING TM 990/100M

Figure 2-3. Memory Configuration For The Software Development System

Note that the entire onboard EPROM area of both microcomputers is eliminated from the
system memory map. The EPROM area on the TM 990/100M board is disabled by a new
address decode ROM, and the EPROM on the TM 990/101M board is located in upper memory
but not accessed by the system.

Advantages of RAM Memory Expansion

An expanded RAM memory will facilitate better use of the Text Editor and Program Debugger
as well as other software development programs. Program segments assembled by the
Symbolic Assembler will be the same size as without expanded memory; however, a larger
symbol table will be allowed. Expanded memory should begin at address 200016. See your
memory expansion board user’s guide for correct switch and jumper settings, and proper
installation into the system card cage.

2.3.3.3 Preparing the TM 990/100M Microcomputer Board

On the TM 990/100M board, a ROM address decoder must be replaced and jumpers set to the
configuration as shipped from the factory except for jumper J11 which is installed for a 20 mA
current loop terminal or disconnected (factory ship configuration) for an RS-232-C terminal;
this is shown in Table 2-1. After verifying jumper placement, replace the ROM in socket U17 of
the TM 990/100M. This new ROM address decoder changes the addressing scheme so that the
microcomputer RAM is in lower memory and microcomputer EPROM is disabled. The new
decode ROM is shipped (unconnected) on the TM 990/302 board, installed in storage socket
XU12. ROM placements are shown in Figure 2-4. Replace the ROM as follows:

® Remove the replacement ROM from socket XU12 on the TM 990/302 board, and
remove the ROM supplied with the TM 990/100M in socket U17; temporarily place
the latter ROM in a convenient location. Note that the new ROM replacement is
marked “2212017 U12" and the ROM to be replaced is marked “991575 U17".

2.5

@ Position the replacement ROM in socket U17 of the 990/100M (as indicated by the U
number marked on the ROM). Positioning of ROM pin 1 is as shown in Figure 2-4.

e Carefully press the replacement ROM into the socket on the TM 990/100M board

until the ROM is firmly seated. Visually verify that pins are not bent and that they
make correct contact.

@ Place the old ROM in the socket on the TM 990/302 board that held the replacement
ROM (which is now in the TM 990/100M board).

)
‘L TM 990/100

B R | L
N 100

s i

ULUUL il
|

PROM
IN XU12

i =
\~ TM 990/302

PROM EXCHANGE PROCEDURE:

1. Remove PROM in socket U17 on TM 990/100M microcomputer board.

2. Remove PROM in socket XU12 of TM 990/302 board and insert it into
socket U17 of TM 990/100M board.

3. Insert PROM removed from U17 of TM 990/100M board into socket
XU12 of TM 990/302 board for safekeeping.

Figure 2-4. Address ROM Changeout At TM 990/100M Board

2-6

TABLE 2-1. JUMPER CONNECTIONS ON THE TM 990/100M BOARD

JUMPER PURPOSE SET TO POSITION*

J1 TMS 9901 interrupt P1-18**

J2,J3,J4 EPROM type DC

J5,J6,J8 Multidrop interface DC

J9,J10,J12

J7 EIA/Multidrop select EIA

J11 EIA/20 mA Current loop select Install for 20 mA, Disconnect for EIA**
C5 RESTART Delay Not Installed**

*DC = Don't care; no change required for use in TM 990/302 configuration.
**Position as shipped at factory.

TABLE 2-2. JUMPER CONNECTIONS ON THE TM 990/101M BOARD

JUMPER PURPOSE SET TO POSITION*
E1-E2/E2-E3 INT4 From TMS 9902 (Local) E1-E2
E4-E5/E5-E6 INT5 From TMS 9902 (Remote) E4-E5
E7/E8/E8-E53 Wait State For Onboard EPROM DC
E9-E10/E10-E11 TMS 2708/TMS 2716 Memory Mapping DC
E12-E13/E13-E14 Enable/Disable Onboard EPROM E12-E13**
E15-E16/E16-E17 RAM/EPROM Mapping E15-E16**
E18-E19 Pin 1 Of P3 Connected To Ground DC
E20-E21 Microterminal Power +5V DC
E22-E23 Microterminal Power +12V DC
E24-E25 Microterminal Power —12V DC
E27-E28/E29-E30 EPROM Is TMS 2708 DC
E26-E27/E28-E29 EPROM Is TMS 2716 DC
E32-E33/E34-E35 Expansion EPROM Is TMS 2708 DC
E31-E32/E33-E34 Expansion EPROM Is TMS 2716 DC
E36-E37 Teletype Terminal at P2 (E36-E37 If TTY Required)
E38-E39 Multidrop At Local Port DC
E39-E40 EIAOr TTY At P2 E39-E40**
E54-E55 Port P3 EIA Compatible E54-E55**
E55-E56 Port P3 Modem Compatible Not Installed
C25 RESTART Delay Not Installed**

*DC = Don't Care; no changes required for use in TM 990/302 configuration.
**Position as shipped at factory.

2-7

TABLE 2-3. JUMPER CONNECTIONS ON THE TM 990/302 BOARD

JUMPER PURPOSE SET TO POSITION
E1-E2 Causes Wait State In Access Of Slow Memories* E1-E2**
E2-E3 Does Not Cause Wait State Not Installed**
E4-E5 Load Function Enabled (Load Vectors In Upper Memory) E4-E5**
E5-E6 Load Function Disabled Not Installed**

*Wait state requirement depends on variables listed in Table 2-4.
*#*Pgosition as shipped at factory.

TABLE 2-4. WAIT STATES REQUIRED FOR MEMORY SPEED AND SYSTEM CLOCK*

MEMORY ACCESS (ns) 3 MHz 4 MHz
450 Wait Wait
300 No Wait Wait
200 No Wait No Wait

* Jumper E2 — E1 = wait, E2 — E3= no wait

2.3.3.4 Preparing The TM 990/101M Microcomputer Board

On the TM 990/101M board, a new decode ROM is not necessary because the memory decode
changes (RAM in lower memory, onboard EPROM disabled) are caused by jumper changes
(Table 2-2). On the TM 990/101M, insert jumper E12-E13 to disable onboard EPROM (TIBUG is
not used), and insert jumper E15-E16 to reposition RAM/EPROM addressing so that RAM s in
lower memory and EPROM is in upper memory. If a teletypewriter is attached to port P2, insert
a jumper at E36-E37. All other jumpers are as installed at the factory, indicated in Table 2-2.

2.3.3.5 Install The Microcomputer Board Into the Card Cage

Verify that power is not applied to the card cage. Install the microcomputer board into the
chassis.

2.3.3.6 Set Up And Install TM 990/302 Board
Memory mapping of the TM 990/302 board can be changed by settings of S1, a four position
DIP switch, and a solderable jumper socket on the TM 990/302 board. For most applications,
the memory mapping will be for EPROM on the TM 990/302 containing system software, with
a memory map as shown in Figure 2-3. For this configuration, switch S1 and the two jumpers
should be as shipped from the factory:
® Switch S1: all four switches set to ON.

e Jumper sockets: E1-E2 and E4-E5 as shown in Tables 2-3 and 2-4.

With settings as desired, install the TM 990/302 board into the card cage. Memory map
changes are covered in detail in paragraph 2.9.1 of the TM 990/302 Hardware User’s Guide.

2-8

(¥

—

2.34 ATTACH TERMINAL, RUN PRELIMINARY SYSTEM CHECK

235

Connect a cable from the data terminal to connector P2 of the microcomputer as shown in
Figure 2-5. Terminal cable numbers are listed In Table 2-5. Appendices A and B describe
cabling for Texas Instruments Model 733/745 and TTY Model 3320/5JE data terminal. At this

point, the system configuration can be checked. Apply power to the card cage backplane and
data terminal.

CAUTION

Before applying power, check that voltages at the power supply are as
specified in paragraph 1.5 and are connected as shown in Figure 2-2.

With power applied, check system operation at this point using the following procedure:

(1) Actuate the RESET switch on the microcomputer (right side facing the card cage).

(2) Pressthe CR (carriage return) key at the system terminal.

(3) The terminal should respond with a period (.) and a bell indicating at this point the
Software Development Board monitor is executing and the system is correctly
connected.

If the system monitor does not respond, recheck cabling, jumper connections, and ROM
placement (e.g., correct pin positioning), then restart the system by reexecuting steps (1) to (3)

above. When the system monitor executes, indicated by a period (.) on the terminal, do not

proceed further, but remove power and proceed to the installation of tape recorders, which
follows.

TABLE 2-5. AVAILABLE TERMINAL — MICROCOMPUTER CABLES

CABLE NUMBER CONNECTS
T™ 990/501 Connector Kit For Custom Wiring
TM 990/502 RS-232-C Terminal
TM 990/503 Texas Instruments 743/745 Terminal
TM 990/504 Model 33 ASR Teletypewriter Modified For 20 mA Current Loop
TM 990/505 Texas Instruments 733 ASR Terminal

CONNECT THE TAPE RECORDERS TO THE TM 990/302

Figure 2-5 shows the connections between the audio tape recorder/players and the TM 990/
302 board. Although the system can be operated with one recorder, a system operates
optimally with two tape recorders. Connect the tape recorders as follows:

(1) Tape recorders operate in either a playback or record mode. The TM 990/508 cable
joins the TM 990/302 board (connector P2, right side viewed from card cage front) to
one or two recorders. At the recorder(s), attach the four labeled leads of the
TM 990/508 cable (T1 to T4) as follows:

29

T™ 980/510/520

—

CARD CAGE
“'-..]
T™ 980/10X
MICROCOMPUTER
P2 P3 ks
T™ 990/302

P3

PERSONALITY CARD E

TM 990/508 CABLE ——___

e

WR DATA j

-\—‘\N-___

RD DATA

\

/

WR MOTOR
RD MOTOR
=
WRITE READ

CASSETTE

CASSETTE

SEE TABLE 25

TERMINAL 2
(TM 990/101 ONL_,_Y_!_

\\
\,,ﬂ,._,

TERMINAL 1

R - -

AUX/LINE IN MONITOR/EAR : O
/o [REM REM
f \ s =T =y _—

Figure 2-5. System Cabling Between Boards And Peripherals

a. Atthe record cassette unit, attach TM 990/508 leads as follows:

e Lead marked “WR MOTOR” to the motor control jack

(REMOTE) of the record unit.

® Lead marked “WR DATA" to the auxiliary input jack (AUX) of

the record unit.

b. Atthe playback cassette unit, attach TM 990/508 leads as follows:

@ Lead marked “RD MOTOR"” to the motor control jack

(REMOTE) of the playback unit.

® Lead marked “RD DATA" to the earphone output jack (EAR or

MONITOR) of the playback unit.

NOTE

A schematic of the TM 990/508 cable is provided in Appendix |.

2-10

(2)

(3)

(4)

(5)

Attach the female connector of the TM 990/508 cable to edge connector P2 on the
right side (facing card chassis) of the TM 990/302.

CAUTIONS

1. The TM 990/508 cable is keyed to fit only on
connector P2 of the TM 990/302 board. If an
unkeyed connector is used, verify that the audio
cassette cable is connected only to P2 of the
TM 990/302 board and not mistakenly to the
microcomputer board. Damage can occur if
mistakenly connected.

2. Do not operate the tape recorders on battery
power as this could cause varying motor speeds
in recording and playback, resulting in erroneous
data.

3. Do not read data from cassettes while an EPROM
is inserted in the personality card attached to the
TM 990/302. This could mistakenly program bits
on the EPROM.

Insert high-quality tapes into the recorder/players. Rewind the cassettes.
NOTES

1. Texas Instruments cannot guarantee system per-
formance when using substandard tapes. Use
only the highest quality tapes to ensure proper

performance. Paragraph 2.3.1 contains recom-
mended tapes.

2. If a digital cassette tape is used, avoid recording

in the area of tape with the beginning-of-tape
hole.

Turn on the tape recorder/players.

Set the tape machine controls as follows:
® volume control to between 50 to 70 percent full volume.
® tone control to between 80 to 100 percent treble.

The correct settings will be indicated by illumination of the sensing LED on some
tape machines during data transfer.

CAUTION
Do not change the volume or tone control during

a read or write operation; this will probably result
in transmission of erroneous data.

24

PHYSICAL DEVICE NUMBERS (DEVNOS)

The 302 SDB monitor anticipates that external physical devices are connected to the system at
prescribed locations (system connections shown in Figure 2-1). These device locations are
shown in Table 2-6.

Physical device numbers (DEVNO's) are used to describe to the system software the
following:

e what physical devices (e.g., terminal, cassette recorder/player, etc.) are connected
to the system

e the reserved use for each physical device.

Before the system calls up any software development program, it must be given the system
configuration. This is accomplished with DEVNO's during the program call. DEVNO's actually
indicate if specified physical devices are connected to predetermined 1/0 conectors on the
microcomputer and SDB board. These physical devices are listed in Table 2-6 along with
which connector to which these devices must be connected. Table 2-7 lists each DEVNO and
its corresponding connector and physical device.

DEVNO's are provided to the system when the particular SDB program is called up as in
paragrah 2.6.

TABLE 2-6. DEVICE LOCATIONS/CONNECTIONS IN SYSTEM

DEVICE CONNECTION DEVNO

System Terminal Connected to connector P2 of the microcomputer 1

Cassette Player Motor controlled through plug marked RD MOTOR of the /508 cable 2

Cassette Player Motor controlled through plug marked WR MOTOR of the /508 cable 3

Auxiliary Terminal Connected to P3 of microcomputer board (TM 990/101M only) 4

(connected to P3 of the /302 board)

(connected to the /302 board)

TABLE 2-7. DEVNO DESCRIPTION

DEVNO

DESCRIPTION

0 Dummy. Used when DEVNO number is required but device is not present or not required.
1 System log (terminal) connected to P2 of microcomputer board.

2 Cassette unit with motor control attached to RD MOTOR plug of /508 cable connected to P2 on /302
board. RD DATA plug is not affected; it must be inserted in EAR or MONITOR jack.

3 Cassette unit with motor control attached to WR MOTOR plug of /508 cable connected to P2 on /302
board. WR DATA plug is not affected; it must be inserted in AUX or LINE IN jack.

4 Auxiliary terminal optionally connected to P3 of TM 990/101M board (this microcomputer board
only).

212

25

26

SYSTEM INITIALIZATION AND MONITOR CALL

With the system properly installed and connected, the SDB monitor can be entered after
power is applied by (1) actuating the RESET switch (right side of microcomputer board when
facing chassis) and (2) pressing the CR (carriage return) key on the system terminal. The
system should respond with a period (.) and a bell on the system terminal.

NOTE

The EIA interface data format is fixed for 1 start bit, 2 stop bits, even
parity and 7 data bits. The baud rate is set up by software detecting the
bit width of the ASCII carriage return that user will type in after power
up. The available baud rates are: 110, 300, 1200, 2400, 4800, 9600 and
19,200 Hz.

CALLING SDB PROGRAM

Call the desired SDB program by responding with one of the following mnemonics to the SDB
monitor prompt (a period). The call is completed with a carriage return:

Mnemonic SDS Program

TE Text Editor (Section 3)
SA Symbolic Assembler (Section 4)
RL Relocating Loader (Section 5)
DP Debugging Package (Section 6)
EP EPROM Programmer (Section 7)
DM Dump Memory (Section 8)
SR 2nd EIA Baud Rate (Section 9)
UL Uplink (Section 11)

Examples:

JED,2 Initial input of source program to Text Editor from keyboard; output
source to cassette unit with motor controlled by RD MOTOR plug and
data sent via WR DATA plug.

JE2.3 Call Text Editor, read source from playback cassette (DEVNO 2);
output edited source to record cassette (DEVNO 3)

SA 2,31 Call Symbolic Assembler, read source from playback cassette (DEVNO
2), write object to record cassette (DEVNO 3), print listing on system
terminal (DEVNO 1)

SA234 Call Symbolic Assembler, read source from playback cassette; write
object to record cassette, and print listing on terminal at auxiliary port
of TM 990/101M (DEVNO 4)

.TE2,40r Read source from either cassette and print on the terminal at the

.TE3,4 auxiliary port of the TM 990/101M (DEVNO 4). DEVNO 4 should

operate at 2400 baud or less and be able to understand tab characters.
A “Q" command is the only command given under the Text Editor (no
editing is attempted).

2-13

2.7

271

2.7.2

RECORDER/PLAYER PROTOCAL

The SDB software does not perform tape rewind operation; thus the user is responsible for
rewinding the tape before a read or write operation, and also for loading the tape to the area of
magnetic oxide before a write.

In a read operation, the software looks for a header which is an area of tape containing code
identifying the start of data. Data following the header code is considered to be valid recorded
data.

Before writing on the tapes, the tapes must be rewound to the clear leader, then brought
forward over the magnetic oxide area, erasing the magnetic oxide area of any possible header
coding from previous write operations. The write operation begins with writing the header for
the to-be-recorded data.

Before a read operation, rewind the tape to the clear leader. Software will find the start of valid

data by reading the clear leader and magnetic oxide areas (erased) until the header is read; the
data following the header is considered valid data.

Note that before tape can be moved using the recorder/play = keys, the plug to the motor
control jack (REMOTE) must be removed.

SETTING UP FOR A WRITE OPERATION (TWO-CASSETTE OPERATION)
The following assumes a two-cassette operation using the TM 990/508 cable.

(1) Unplug the WR MOTOR plug from the record unit (REMOTE jack).

(2) Rewind the cassette to clear leader.

(3) With the RD DATA plug installed (microphone disabled), press the RECORD key to
advance tape into magnetic oxide area; this also erases the tape. Positioning at
magnetic oxide area can be ascertained by timing the run of tape or by viewing tape
through the clear window of the cassette case until the magnetic oxide area

appears.

(4) Reinsert the WR MOTOR plug (into REMOTE jack) to stop the tape (RECORD key
remains depressed).

The recorder is now ready for a software command to write to the recorder.
SETTING UP FOR A READ OPERATION (TWO-CASSETTE OPERATION)

This assumes that clear leader and erased tape precede the data header and that TM 990/508
cable is used.

(1) Plugthe RD DATA plug into the MONITOR/EAR jack.
(2) Unplug the RD MOTOR plug from the playback unit (REMOTE jack).
(3) Rewind tape to clear leader. .

(4) Reinsert the RD MOTOR plug into the playback unit (REMOTE jack).

2-14

2.7.3

(56) Depress the PLAYBACK key at the playback unit.
The playback unit is now ready for a software command to read data from its cassette.
ONE-CASSETTE OPERATION
In a one cassette operation, the same DEVNO should be used for the read cassette as well as
for the write cassette (with the assembler, DEVNOs must be the same). This allows the use of
one motor control plug for both operations (as explained in Tables 2-6 and 2-7, DEVNQO's 2 and
3 refer to the motor control plug). For instance, in a text edit call, DEVNO 2 can be specified as
both the source input and the edited source output device, meaning that source records will be
read in from a recorder/player and edited records will be written to the same device. The
following call will be used: i

=
In this situation, when changing from a read operation to a write operation (or vice versa), the
RD MOTOR plug will be used for both operations (if DEVNO 3 was specified, the WR MOTOR
plug would be used for both operations).
Both data plugs can be left plugged into the unit at the same time.

® Tobe able to read data, plug the RD DATA plug in the EAR or MONITOR Jack

® To be able to write data, plug the WR DATA plug into the AUX or LINE IN jack

For example, a text edit operation requires reading source from cassette, then writing edited
source back to the same tape. Using DEVNO 2 for both motor controls, set up as follows:

® Rewind cassette to clear leader.

® Plug WR DATA into the AUX/LINE IN/MIC jack of cassette player.
® Plug RD DATA plug into EAR or MONITOR jack of cassette player.
@ Plug RD MOTOR plug into REM jack of cassette player.

® Press PLAYBACK key on cassette player.

On command, software will read in the source lines. After editing, set up as follows to write out
the edited source statements:

® Pressthe STOP key on the cassette player.
® Unplug the RD MOTOR plug from the cassette player.

® Rewind the cassette tape.

2-15

With the WR DATA plug into the cassette recorder (this disengages any microphone
but allows the erase mechanism to function when tape is moved), press the
RECORD key(s) at the cassette recorder. Verify that the magnetic oxide area of the
tape is brought past the record head. The erase function of the recorder will ensure
that previous header data will be erased, preventing mistakes during later read
operations.

When the tape is properly located, insert the RD MOTOR plug into the REM jack of
the cassette recorder; this will stop the tape movement leaving the cassette recor-
der ready to accept data via the text editor software.

After writing the edited source on tape, the user can read in the edited source lines. Set up as
follows(note WR DATA and RD DATA plugs are still inserted):

Press the STOP key at the recorder.
Unplug the RD MOTOR plug.

Rewind the tape to clear leader.

Insert the RD MOTOR into the REM jack.

Press down the PLAYBACK key on the cassette player.

When commanded by software, the data on cassette will be read.

CAUTION
In one-cassette operation, it is sometimes necessary to change
cassettes without rewinding them. Exercise care to prevent any
movement of the tape within the cassette while the cassette is outside
the recorder/player; movement of the tape can result in loss of data.

2-16

3.1

3.2

33

SECTION 3
TEXT EDITOR

GENERAL

The TM 990/302 Text Editor provides a means for initially generating source-program state-
ments, storing them on cassette, and then later editing changes into these source statements.
Interactive communication from the terminal allows the user to (1) generate a new source-
statement file or (2) edit a previously generated source-statement file contained on cassette. In
either mode, the source statements can be edited as required, then written to cassette for
assembly by the assembler.

As an aid in using this manual, a single program that can be loaded and executed by the reader
on the TM 990/302 will be used to explain the system software. This program will cause the
LED on the TM 990/302 board to blink (shown in Figure 1-1). The writing of this program
begins in this section, in its inception as source statements. Later we will follow along this
theme in assembling, loading, and executing the program.

Text Editor comands are as follows:
® Gcommand: Get source lines from source DEVNO device (paragraph 3.5.1)
® P Command: Print source line(s) on system terminal (paragraph 3.5.2)
® Insert source line(s) within text command (paragraph 3.5.3)
® Delete source line(s) from text command (paragraph 3.5.4)

® R command: Resequence line numbers using specified increment (default incre-
ments are 10: e.g., 010, 020, 030, etc.; paragraph 3.5.5)

e K Command: Keep line(s) in memory; write these to the destination DEVNO device
and input source lines from the source device (paragraph 3.5.6)

® (Q command: Quit Text Editor mode, write remaining source lines in memory and
exit from Text Editor and reenter monitor (paragraph 3.5.7).

SYSTEM CONFIGURATION

Minimum configuration includes a system terminal, the TM 990/302 board, a microcomputer
board, and one cassette player/recorder. One cassette can be used in a dual role: container of
the source statements to be input and edited, and storage for the edited source statements.
The optimum system configuration includes two audio cassettes, one for the source cassette
(containing source statements to be edited) and one for the destination cassette (to receive
editd source code). See Section 2 for detailed data on system configuration.

CONSIDERATIONS
® The maximum program size which can be loaded into memory is limited by

memory space. Program segment size is determined by the number of characters
written to the destination DEVNO device during a K (Keep) or Q (Quit) command.

31

34

341

342

3421

® DT directive must begin all programs (see Figure 2.10).

® Memory space can be economized by judicious use of (1) comments following
source statements and (2) space between source statement fields. The latter is
facilitated by the horizontal tab feature of the Text Editor (paragraph 3.4.2).

® Theonly exit back to the monitor is through the Quit command. The ESC key will not
exit to the monitor.

TEXT EDITOR CALL AND SPECIAL KEY FUNCTIONS

TEXT EDITOR CALL
To call the Text Editor, respond to the monitor prompt with the following (see paragraph 1.7):

TEA<DEVNO > {A} <DEVNO> <(CR)>

DEVNO containing source to be edited Z—DEVNO that receives edited source

When source lines will not be brought in from cassette but will be initially input from the
keyboard (i.e., a Get command is not heeded), the input DEVNO is 0 (zero for dummy).

Examples:

JE2,3 Input source lines from RD MOTOR cassette; write edited source to WR
MOTOR cassette.

.TEO,2 For input of source from keyboard; note that DEVNO 0 is used for keyboard
input which also disables get command; output edited source to RD MOTOR
cassette.

JE2,2 Use one cassette (RD MOTOR cassette); input entire program segments from
this cassette; output edited segments back to this cassette.

.TE2,4 Input from RD MOTOR cassette; write output to terminal connected to P3 of
TM 990/101M.

When initialized, the Text Editor will issue a question mark (?) prompt asking for user input of
Text Editor commands, explained in subsection 3.5.

.TE2,3

g - Prompt for Text Editor command

SPECIAL KEY FUNCTIONS

Use Tab Function To Space Between Source Fields (Control l)

To tab between the label, opcode mnemonic, operand, and comment fields of the source
statements, press the | key while the control (CTRL) key is pressed. This will automatically
place the required spacing between source fields when later printed as a source listing or by
the print command; however, initially the tab will create a single space. This function
economizes memory space.

3-2

3.4.2.2 Use CONTROL H and F Commands To Correct Characters

35

351

To correct a character already input on a line, press the H key while the CONTROL (CTRL) key is
pressed. For each CONTROL H entered, the printing mechanism will backspace one character.
When at the character to be changed, insert the correct character. To return to the end of the
line, use the CONTROL F command (press the F key while the CONTROL key is pressed). For
each CONTROL F entered, the printing mechanism will move forward one character. Instead
of using the CONTROL F function, the user can retype the characters that were backed over.

COMMANDS

All commands are comprised of one character with no, one, or two ‘arguments. All are
terminated by a carriage return.

GET SOURCE LINES COMMAND (G)

This command brings one program segment of previously edited source lines into memory
from the input device designated in the Text Editor call and then prints the number of the last
line brought into memory. Once in memory, the source lines can be edited using the other
Text Editor commands. The bounds of one program segment are set by the Text Editor Keep
(K) or Quit (Q) command; each command writes one program segment to the source line
output device. Before reading in source lines in a one-cassette operation, itissues a prompt to
the user asking if the cassette is ready to be read from. In a two-cassette operation, prompts
are not issued and the command executes after the carriage return. Format (see paragraph

1.7):

?G <(CR)>
Example:

G

**SWAP TAPES
Prompts issued in single-cassette operation only
**HIT ‘CR'TO GO —

900 <«——————Number of last statement brought into memory
? <«———When program segment read, prompt issued
NOTE

Source lines can be inserted from the keyboard
into the memory buffer before bringing in source
lines from the cassette with the Get command.
When this is the case, the first line number on the
cassette must be a higher number than the
highest line number inserted from the keyboard.
Keyboard insertion is explained in paragraph
3.5.3. Errors are explained in paragraph 3.6.

33

35.2 PRINT SOURCE LINES COMMAND (P)

This command causes designated source lines to be printed on the system terminal. A
four-digit source line number, printed to the left of each line is used to uniquely reference each
line. The command consists of the mnemonic P followed by either no, one, or two numbers
(line numbers in decimal) and a carriage return. A no-number command will print out the first
line in the buffer. A one-number command will print out the line specified. A two-number
command will print the lines from the first line number to the second line number; the first line
number must be a smaller number than the second line number. If the first line number is not
specified (i.e., a space entered), its default value will be the first line number in the buffer.
Printing of lines can be stopped/started by depressing the terminal space bar.

?P [Source Line]{{‘}[Last Source Line]<(CR)>

L optional last line of multiline print

First (or only) line number

Examples:
(1) 7P = Finish with carriage return
100 IDT ‘BLINK’ =First line in memory buffer
? - Return to command scanner
(2) ?P100 Print source line 100
100 IDT ‘BLINK’
?
(3) ?P100,140 Print source lines 100 to 140
100 IDT ‘BLINK’
110 BEGN LWPI >1000 WP ADDR
120 LI R12,>1706 LED CRU ADDR
130 STRT MOV R1,R1 R1ALL ZEROES?
140 JEQ ON YES, LIGHT LED
? - Prompt for next command

3.5.3 INSERT SOURCE LINES COMMAND
This command is used to input source lines from the terminal:
® asinitial source-line inputs (first input of program source code)

® between or following existing source lines

34

® in place of existing source lines (replace existing lines)

Lines are inserted by specifying the line number then following this with the source statement
to be inserted. In this manner, the user can designate his own line numbering system. It is
suggested that lines be in increments, with the increment value sufficient to allow later
insertion of lines without renumbering the existing lines. For example, an increment of ten
(lines 100, 110, 120, etc.) would allow later inserting lines 101 to 109, 111 to 119, etc. Note that
line numbers will also be the source statement number in the assembly listing.

Source line format is the same as will be displayed in the source listing (from left to right: label
field, opcode field, operand field, comment field), with each field separated by at least one
space. When inserting source lines, the line number precedes the source statement. The label
field begins following this line number or following this line number and a single space. The
mnemonic field begins two spaces following the line number (if no label) or one space
following the label.

NOTE

It is recommended that all spaces between fields
be inserted with the CONTROL | tab function with
the label field beginning immediately after the
line number. The CONTROL | tab function en-
sures that all fields be aligned in a source listing
or line printing. When inserted, tabs appear
merely as a single space. See paragraph 3.4.2.1.

Figure 3-1 shows the format for inserting a source line. It follows the general source listing
format shown in Figure 4-4 (Section 4)

sou rce statement fields

XXXX "LABEL OPCODE OPERAND COMMENTS' <«———finish with carriage return

each field separated by at least 1 space

or CONTROL | tab, no spaces in fields

opcode begins 2 spaces or a CONTROL | tab
after line number
one or no space between line number and label field
ine number (1 to 4 digits)

Text Editor command prompt

Figure 3-1. Source Statement Fields

35

3.5.3.1 Initial Source Input

When used for initial input of source statements (generated from keyboard, not read in from
cassette), the Text Editor is the first software development program called. In this case, merely
call the Text Editor, specifying DEVNO 0 (zero) for source input and DEVNO 2 or 3 for source
output, then use the insert line process.

CAUTION

If DEVNO 0is not used for source input, an end-of-
file will not be written by the Quit command and
inserted source lines will be lost.

To begin lines at line number 100, enter the number 100 followed by the source statement.
For example; enter an IDT directive which is mandatory for all programs:

two spaces or one CONTROL | indicate first entry is opcode

\

7100 IDT ‘BLINK’
7110 BEGN LWPI >1000 WP ADDR
? \— one or no space indicates first entry is label

Note that the question mark prompt from the Text Editor command scanner appears after
each line insertion. At this command level, either additional lines can be inserted or any of the
other Text Editor commands can be executed.

3.5.3.2 Examples

(1) Compose initial source statements at terminal. The Text Editor would be the first
software program called, and data would be written to the cassette recorder player
with the RD MOTOR plug of the TM 990/508 cable plugged into the motor control
jack of the cassette recorder.

.TEO, 2

7100 IDT ‘BLINK’

2110 BEGN LWPI > 1000 WP ADDR
7120 LI R12,>1706 LEDCRUADDR
7130 SBO 0 TURNON LED

7140 END

?

(2) Add further code between lines. In this case, a timing mechanism to measure a half
second.

?132 LI R2,50000 SETDELAY COUNTER
?134LOOP DEC R2 |SR2ZERO?

7136 JNE LOOP NO,DECREMENT AGAIN
?

36

(3)

(4)

(5)

(6)

?P100,140
100

110

120

130

132

134

136

140

?

BEGN

LOOP

IDT
LWPI
LI
SBO
LI
DEC
JNE
END

?121STRT MOV R1,R1
7122 JEQ ON YES, LIGHTLED
7123 JMP OFF NO, TURN OFF LED
?71240N SBO 0 TURNON LED

?125 SETO R1

‘BLINK’
=>1000
R12,>1706
0

R2,50000
R2

LOOP

R1ALL ZEROES?

SET ON/OFF FLAG

7126 JMP RUN GO TOTIMER
?1270FF SBZ 0 TURN OFFLED
7128 CLR R1

?

?P100,140
100
110
120
121
122
123
124
125
126
127
128
130
132
134
136
140

BEGN

STRT

ON

OFF

LOOP

RESET FLAG

IDT
LWPI
LI
MoV
JEQ
JMP
SBO
SETO
JMP
SBZ
CLR
SBO
LI
DEC
JNE
END

3-7

A printout of the program would now look like:

‘BLINK'
>1000
R12,>1706
R1,R1
ON

OFF

0

R1

RUN

0

R1

0
R2,50000
R2

LOOP

A printing of the program so far would show the following:

WP ADDR

LED CRU ADDR

TURN ON LED

SET DELAY COUNTER

IS R2 ZERO?

NO, DECREMENT AGAIN

Now it is desired to add some control statements for turning off and LED as well as
for turning it on. Insert the following after line 120:

WP ADDR

LED CRU ADDRESS
R1ALL ZEROES?

YES, LIGHT LED

NO, TURN OFF LED
TURN ON LED

SET ON/OFF FLAG
GO TO TIMER

TURN OFF LED
RESET FLAG

TURN ON LED

SET DELAY COUNTER
IS R2 ZERO?

NO, DECREMENT AGAIN

The timing required for the decrementing timer can now be checked for a correct
value. Since the two instructions at lines 0134 and 0136 require a total of 24 clock
and memory cycles (at 333 ns each), a half-second blink would take approximately
62,500 loops through those two instructions. This will require a change in the

(7)

(8)

(9)

(10)

(11)

(12)

loop-count value at line 0132. To change, merely insert over the old line 0132.

7132 LI R2,62500 SET DELAY COUNTER
?

A printout of line 0132 shows the change was made.

?7P132

132 LI R2,63500 SET DELAY COUNTER
?

A check of the printout shows that register numbers were preceded by the letter
R; however, this has not been set up so that the assembler will recognize these
alphanumeric register symbols (it automatically recognizes the number only).
Thus, the EQU assembler directive has to be used (assembler directives are ex-
plained in Appendix F). This should be inserted before the first use of predefined
register numbers, as shown next:

7105 R1 EQU 1
7106 R2 EQU 2
2107 R12 EQU 12

An AORG assembler directive is necessary to designate program location when
loading object into memory (Symbolic Assembler object is absolute, not re-
locatable). This directive should be added at the beginning of the source code.

2101 AORG 1040
?

At the end of the decrement loop at lines 134 and 136, there is a need for some
means to repeat the entire sequence with the LED in the opposite mode (lit or
extinguished). Thus, there is a need to jump back to the start of the program,
reentering it where the R1 flag is checked.

2138 JMP STRT RESTART PROGRAM
?

To have the program ready to execute as soon as it is loaded by the Relocating
Loader, a program entry label can be specified in the operand field of the END
assembler directive. The program entry label identifies the start of program execu-
tion. This address is placed in the Program Counter by the Relocating Loader so that
the program can be executed by the EX command of the Program Debugger. Note
that by inserting over an existing line, the new line replaces the old.

7140 END BEGN
?

Finally, a printout of the program as it is constructed so far:

?P100,140
100 IDT ‘BLINK'
101 AORG 1040

3-8

354

105 R1 EQU 1

106 R2 EQU 2

107 R12 EQU 12

110 BEGN LWPI >1000 WP ADDR

120 LI R12,>1706 LED CRU ADDR

121 STRT MOV R1,R1 R1 ALL ZEROES?

122 JEQ ON YES, LIGHT LED

123 JMP OFF NO, TURN OFF LED
124 ON SBO 0 TURN ON LED

125 SETO R1 SET ON/OFF FLAG
126 JMP RUN GO TO TIMER

127 OFF SBZ 0 TURN OFF LED

128 CLR R1 RESET FLAG

130 SBO 0 TURN ON LED

132 LI R2,62500 SET DELAY COUNTER
134 LOOP DEC R2 IS R2 ZERO?

136 JNE LOOP NO, DECREMENT AGAIN
138 JMP STRT .RESTART PROGRAM
140 END BEGN

DELETE SOURCE LINES COMMAND

This command deletes source lines one line at a time. When the line(s) are deleted, source line
numbers following the deleted lines remain the same until renumbered by the resequence (R)
command used with the Keep and Quit commands. A carriage return completes the
command.

The format is similar to the insert lines process. In response to the question mark of the Text
Editor command scanner, specify the line number to be deleted, and follow this with a carriage
return. An erroneous line number can be deleted by retyping the line preceding the line to be
deleted and inserting a plus (+) sign after the number of the retyped line (e.g., 220+).

Format (see paragraph 1.7):
? <line number> <(CR)>
Examples:
(1) InourBLINK programming exémple, notice that line 130 should be deleted and that
the next line, 132, needs to be changed in order to show the beginning of the

counter; thus lines 130 and 132 can be deleted and substituted with a correct line
132. (Note that this can also be caused by deleting one line and inserting over the

other.)
7130 «— Delete line 130, finish with a CR
7132 <4————— Delete line 132, finish with a CR
?7P128,134 «-————————— Printfrom line 12810 134
128 CLR R1 RESET FLAG Lines 130 and
134 LOOP DEC R2 IS R2 ZERO? 132 deleted
7130 RUN LI R2,62500 SET DELAY COUNTER new line
7 - control back to command scanner

39

(2) Lines 0122 and 0123 of the program can be replaced with a single instruction.

7122 JNEOFF NO TURN OFF LED =-— Replace line 122 with new line
7123 = Delete line 123
7?7 - Return to command scanner

(3) Finally, a printout of the program as it is constructed so far:

?P100,140

100 IDT ‘BLINK’

101 AORG >1040

105 R1 EQU 1

106 R2 EQU 2

107 R12 EQU 12

110 BEGN LWPI >1000 WP ADDR

120 LI R12,>1706 LED CRU ADDR

121 STRT MOV R1,R1 R1ALL ZEROES?

122 JNE OFF NO, TURN OFF LED
124 ON SBO 0 TURN ON LED

125 SETO R1 SET ON/OFF FLAG
126 JMP RUN GO TO TIMER

127 OFF SBZ 0 TURN OFF LED

128 CLR R1 RESET FLAG

130 RUN LI R2,62500 SET DELAY COUNTER
134 LOOP DEC R2 IS R2 ZERO?

136 JNE LOOP NO, DECREMENT AGAIN
138 JMP STRT RESTART PROGRAM
140 END BEGN

?

355 RESEQUENCE LINES BEGINNING AT NEW VALUE (R)

This command begins line numbering at a specified decimal value and renumbers all lines
beginning at that value, incrementing each line by ten. This command has a practical appli-
cation where a series of line inserts and deletes has widely changed line numbering or has
filled up the numbers between lines so that insertion by line number is not possible. Re-
numbering of lines takes place during a Keep or Quit command when lines are written to the
ouput buffer. The increment value of ten cannot be changed. A line number can be from 1 to
9999 with numbers from 1 to 8999 incremented by ten and numbers from 9000 to 9999
incremented by one. If a program is large enough to have a line number greater than 9999, the
transfer to tape operation is halted, an end-of-file is written to the output cassette, and the Text
Editor is exited with an ERROR 32 message output (errors are explained in paragraph 3.6).
Data following line 9999 will be lost.

Format (see paragraph 1.7):
?R<first line number in decimal >

\— must be less than 90001¢

For example, if a program has line numbers 112, 113, 115, 119, 120, 121, 127, and 130, and the
following is executed:

?R255

the program (after a Keep or Quit) will have line numbers of 255, 265, 275, 285, 295, 305, 315,
and 325.

3-10

3.5.6

35.7

CAUTION

Do not follow the Resequence command with a
Quit command, else only the first program seg-
ment will be written to cassette. Instead, use the
Keep command to record each segment, then use
the Q command to write the EOF.

KEEP (SAVE) EDITED SOURCE LINES COMMAND (K)

This command writes the source lines in the memory edit buffer to the output DEVNO device
(specified in the call for the Text Editor). The Text Editor retains program control (unlike the
Quit command which transfers control to the monitor). The block of lines will be stored on the
output device as a source segment, the entity that will be brought in later as a block by the Get
source lines command (paragraph 3.5.1). The Keep command is terminated with a carriage
return; after which a prompt is printed reminding the user that the correct tape should be on
the write cassette. The software will wait until a carriage return is entered, indicating that the
cassette recorder is ready. If a number is returned after Keep command execution, this is the
first line now in the memory edit buffer. If no number is printed, the memory edit buffer is
empty.

Format (prompt issued only for one-cassette operation):

?K<L(CR)>
Example:
7K
**SWAP TAPES Prompt: when tape is ready,
**HIT ‘'CAR’ TO GO— | answer with carriage return
1010 = First line in buffer following Keep
? - Return to Text Editor command scanner

NOTE

Make sure that the cassette unit is correctly
connected, powered up, and ready for operation
before executing the Keep command.

QUIT TEXT EDITING COMMAND (Q)

This command is the only exit from the Text Editor program to the monitor. The Quit
command is similar to the Keep command (paragraph 3.5.6); however, the Quit command
performs the following additional functions:

@ if initial input of source lines (DEVNO 0 designated at editor call as input device;
thus no input from cassette), the Quit command writes an end-of-file mark to
cassette after the memory edit buffer contents are written to the output cassette
(does not attempt to read input device).

® ifinputis broughtin from cassette (not initial input), the Quit command reads in the
remaining input-device program contents up to the end-of-file mark (written there
by a previous Quit command) and writes these to the output device so that all
program contents are on the output device.

® the Quit command returns control to the monitor.

31

After the Quit command is executed, it should be assumed that the memory buffer is empty of
useable data.

Format (see paragraph 1.7):

7Q <(CR)>
AT control returns to SDB monitor (period printed)

CAUTION

The end-of-file mark is used by the Text Editor to
terminate its casette read operation and return
control to the Text Editor command scanner. If an
end-of-file mark is not found, control will not be
passed to the Text Editor editing commands;
thus, it is imperative to use the Quit command to
terminate program editing.

36 ERROR CODES FOR TEXT EDITOR
3.6.1 **ERROR21
& Commands: G, K, Q

® Meaning: Error in transmission of source statements from cassette to memory
buffer; ceuld be a checksum error or error in data communications format,

® Recovery Procedure: The program segment with the error is lost and will not be
written to cassette with a Keep or Quit command. A Quit command will write the
remaining program segments to the output cassette; then, the truncated program
can be read in again and the lost source records re-entered. Or, after the Quit
command, read in the original source cassette (with error) to see if the error
reoccurs (any editing in the first session will not be on this cassette). Or, the
program segment can be considered lost and the user can continue editing the
remaining source segments, finishing the session with a Quit command, without
the program segment in error.

3.6.2 **ERROR 22
® Command: G

® Meaning: There is a source line in the memory buffer with a line number larger than
the first line number of a segment brought in from cassette. Incoming source lines
should be ascendingly greater than line numbers in the buffer.

® Recovery Procedure: Further input of a program segment is prohibited (i.e., Get
command is prohibited). Commands other than Get can be executed; however,
editing out of the line(s) causing this error will not permit Get command to execute.
A quit command causes a return to the monitor without reading in remaining
program segments from input cassette. User can re-edit original source on the
input cassette or edit the truncated source on the output cassette.

3-12

3.6.3

364

365

3.6.6

3.6.7

**ERROR 23

Command: G

® Meaning: Get command cannot be performed because end-of-file (EOF) has been
detected; thus complete program file has been read.
® Recovery Procedure: Execute Quit command to write memory buffer contents to
cassette.
**ERROR 24
® Command: G
® Meaning: Insufficient space in memory buffer to receive new source records.
® Recovery Procedure: Execute Keep command to write buffer contents to cassette.
Re-execute Get command.
**ERROR 25
® Command: All
® Meaning: Text Editor command input is not valid.
® Recovery Procedure: Insert valid Text Editor command.
**ERROR 26
e Command:K,R
® Meaning: Resequencing of line numbers requested after Keep command executed.
Entire program through EOF marker must have the same line sequence numbering.
® Recovery Procedures:
(1) Continue using present sequencing value
(2) or execute Quit command, reenter Text Editor, and specify new re-
sequencing value before first Keep command. Last Resequence
command will apply.
**ERROR 27
® Command: P
® Meaning: In Print command, first (beginning) line number to be printed was larger
than second (ending) line number.
® Recovery Procedure: Reenter command with first line number smaller than second

line number.

313

3.6.8 **ERROR28

Command: P, |

Meaning: Line number to be printed is too small; a line number of higher value has
been sent to the output cassette.

Recovery Procedure: Reenter command; use a source line number with a value
higher than the highest source line number in the output cassette.

3.6.9 **ERROR29

Commands: Insert or Change Commands

Meaning: Command issued to insert or change a line having a higher value than the
highest-numbered line in the memory buffer.

Recovery Procedure: If line to be inserted or changed has a higher number than the
highest line number memory buffer, use Get command to read in the program
segment containing line numbers in the range desired.

3.6.10 **ERROR 30

Command: Insertion Command

Meaning: Not enough memory buffer space for line to be inserted or line to replace
existing line.

Recovery Procedure: Decrease memory buffer contents using a Keep command or
the line deletion command. Then attempt the line insertion again. If insertion
command also causes a line to be deleted (replace existing line), then line to be
replaced was deleted but new line was not inserted in its place.

3.6.11 **ERROR 31

Command: R
Meaning: Starting line in the Resequence command is larger than 9000.

Recovery Procedure: Reissue the Resequence command with a line-start value less
than 9000.

3.6.12 **ERROR 32

L]

Command: R

Meaning: Resequencing command attempted to generate a line number larger
than 9999 during a Keep or Quit function. Maximum line number allowed is 9999,

Recovery Procedure: When the line number reaches 9999, an end-of-file is written
to the cassette, and data following line 9999 is lost. Re-edit source as required and
begin resequencing lines with a lower beginning number. The resequencing
command increments line numbers from 1 to 8999 by ten, and increments line
numbers from 9000 to 9999 by one.

314

3.7

3.8

DATA BACKUP ON CASSETTE
Sometimes it is desireable to make a backup tape of source programs in order to share known

source or to have a copy in the case of inadvertant destruction of the master source. To make a
backup tape, use the Text Editor with the following commands:

NEZ:3
7Q
The tape will be copied from the cassette unit controlled by DEVNO 2 to the tape unit
controlled by DEVNO 3.
MULTIFILE CASSETTES
The use of multifile cassettes is discouraged. All files are serial and may be difficult to find via

random positioning. With several files per cassette, greater protection must be taken for the
cassette.

315

4.1

SECTION 4
SYMBOLIC ASSEMBLER

GENERAL

The TM 990/302 Symbolic Assembler is a two-pass assembler that interprets the source
statements created using the Text Editor. These source statements are assembled into
absolute (not relocatable) machine code executable by the TMS 9900 series of micro-
computers (See Figure 4-1).

The symbolic Assembler performs the following functions:

® translates the assembly language mnemonics used by the TMS 9900 series of
microcomputers

@ assembles the two pseudo instructions NOP and RT (see paragraph 4.5); however,
memory mapping instructions LMF, LDD, and LDS are not recognized by this
asembler

® allows use of at least 136 one- to four-character labels for symbolic memory
addressing

® allows comments to follow as part of a source statement

® interprets limited add and subtract expressions used with symbolic addresses
(LABL-2, LABL+10, etc.); see paragraph 4.7

® interprets eleven assembler directives to facilitate coding (assembler directives are
explained in Appendix F)

® provides assembler listings containing source statement number in decimal,
location counter value in hexadecimal, assembler object in hexadecimal,
source statement, comments, and error messages (See Figure 4-1)

® assembled object output contains loader tags as well as a checksum code for each
object record. Object is in absolute form, not relocatable.

The TM 990/302 Symbolic Assembler is a two-pass assembler. This means that the assembler
reads the source code twice. Before each read operation, the source code cassette tape must
first be positioned at program beginning before the assembler is executed. During the first
pass, the assembler builds a table containing:

® symbols used in operands for addressing

® the address of these symbols.
During the second pass, the assembler resolves the relative addresses and displacements in
instructions using these symbols, and generates an object on cassette and hard-copy

assembly listing on the system terminal. Figure 4-2 depicts the passes of the two-pass
operation.

4-1

ONE OR TWO O_O

CASSETTE T™ 990/302

OPERATION
oD
COMMAND
INPUT
ASSEMBLY LANGUAGE SOURCE STATEMENT NUMBER (DECIMAL)
(SAME AS TEXT EDITOR LINE NUMBERS)
SOURCE LISTING,
LOCATION COUNTER (HEXADECIMAL) ERROR REPORT
ASSEMBLED CODE (HEXADECIMAL)
LABEL FIELD
OP CODE FIELD
OPERAND FIELD
/ /— COMMENT FIELD
0033 FEOO OZEQ ST LWPI WS SET WORKESFACE FOINTER
FEOZ FFAO
0024 FEO4 OZ00 J&3 RO, 10 RO = TENS MULTIFLIER
FEO& QO0OA
0025 FEO2 04C9 CLR R? R? = NQ. OF TRIES
0024 FEOA 0O4CA CLR R10 R10 = NO. OF TRIES
0027 FEOC 0ZOC LI R12, 220 TMS 22902 CRLU ADDR.
FEQE 0030
00z3 + CUTPLUT OFENING MESSAGE

Figure 4-1. Symbolic Assembler

42 CONSIDERATIONS

e Optimum system configuration would include two cassette recorder/players. A
one-recorder/player operation could require changing source and object tapes as
many times as necessary during the second pass; this would not be necessary in a
two recorder/player operation. In a one-recorder/player operation, take care to
avoid writing over the source code cassette with assembled object. Cassette
operation is explained in paragraph 2.7.

® LMF, LDD, and LDS instructions (memory mapping) are not interpreted.

® Assembler directives are restricted to the 11 defined in Appendix F. External symbol
references and definitions are not recognized; thus, assembler programs cannot be
linked by a linking loader.

® Object will be in non-relocatable absolute code; thus, the user must specify the
program load address with the AORG assembler directive (explained in Appendix
F).

® Macro instructions are not recognized by the assembler.

4-2

(1) FIRST PASS: BUILD TABLE OF SYMBOLS

LOC.
LABEL CNTR.
STRT 0000
LOOP 001C

IASSEMBLER

(2) REWIND CASSETTE

-

O 0O

(3) SECOND PASS: RESOLVE ADDRESSES,
GENERATE SOURCE LISTING,
ERROR REPORT

—_—

O_O »| SYMBOLIC >

LOP1 002C
LOP2 00A4
SUM1 00FA
SUM2 00FC
SUM3 00FE

ASSEMBLER

SYMBOL
TABLE

O_O »| SYMBOLIC -

SUM4 0100
L] L]
[] []
[] []
SYMBOL
TABLE
A~ NN AN
LOC. OPCODE
CNTR. (HEX) SOURCE STMT.
0000 02E0 STRT LWPI > 1000
0002 1000
0004 O4EO CLR @SUM1
0006 00FA
0008 04E0 CLR @SUM2
000A 00FC
000C 04E0 CLR @SUM3
000E 0OFE
a @ L
° @ L
[] [] .
Pen, N AR A S IS

Figure 4-2. Two-Pass Assembler Operation

4-3

® Label size is restricted to a maximum of four alphanumeric characters; the first
character must be alphabetical.

® With minimum configuration of the TM 990/100M with 1K bytes of RAM and a TM

990/302 board, the label table (generated during assembly first pass) will allow use
of 136 symbols. See Table 4-1.

TABLE 4-1. LABEL STORAGE VS. SYSTEM RAM (BYTES)

TOTAL SOURCE OBJECT LABEL NO. OF
MICROCOMPUTER RAM RAM BUFFER BUFFER TABLE* SYMBOLS
1K (TM 990/100M fully populated) 4096 3196 80 820 136
4K (TM 990/101M fully populated) 7168 3196 80 3892 648

*Table size in bytes; six bytes required per symbol.

43 SYMBOLIC ASSEMBLER CALL AND OPERATION
431 SYSTEMSETUP

Prior to calling the Symbolic Assembler, perform the following:
@ set up the system as explained in Section 2

® remove the write protect tab from the source cassette to prevent writing over
source statements

= rewind and load (past clear leader) the cassette(s) as the system does not perform a
load cassette function that would wind the cassette to the magnetic film area of the
tape.

432 SYMBOLIC ASSEMBLER CALL

Before calling the assembler, set up the system as explained in paragraph 4.3.1. To call the
Symbolic Assembler, answer the monitor prompt with the following:

SAA <DEVNO> {"‘} <DEVNO> {A} <DEVNO> <(CR)>

DEVNO of device to receive listing

DEVNO of device that will receive assembled object

DEVNO of device containing source statements

SA command calls assembler

4-4

Examples:

(1) .SA231= Finish with a carriage return

Listing to system terminal

Object to cassette 2

L Source statements from cassette 1

(2) .SA220 = Finish with a carriage return

No listing (dummy specified, object only desired)

Object to cassette 1 (same as source)

L Source statements from cassette 1

(3) .SA20,1 = Finish with a carriage return

LListing on system terminal

No object (listing only desired)

— Source statements from cassette 1

(4) Maximum equipment configuration

SA234 = Finish with a carriage return

~[—Lis*ting to second EIA connector (printer or hard-copy device)
control will be through the system terminal

Object code to cassette 2

L Source code from cassette 1
NOTE

Prior to using DEVNO 4 in the assembler its baud
rate should be initialized with the SR command.

43.3 ONE- AND TWO-CASSETTE OPERATION

Two-cassette operation is recommended because it uses less steps than a single-cassette
operation. Assembler procedures are slightly different for each configuration. Single or dual
cassette operation is automatically determined by the assembler by comparing source-input
and object-output DEVNO values (same DEVNO indicates single-cassette operation).

4-5

NOTE

For either operation, position the tape as speci-
fied in paragraph 2.7 prior to beginning
assembly.

4.3.3.1 Two-Cassette Operation

Before execution of the assembler call (paragraph 4.3.2), set up the system as explained in
Section 2, and have the source cassette rewound to the clear leader. When the assembler call
is executed, the assembler will begin reading source statements and continue until the END
assembler directive is read or an end-of-file is read (the end-of-file is placed on the tape as one
of the final operations of the Text Editor Quit command). After all source code is read in, the
code must be read again in a second pass in which the assembler resolves all relocatable
symbolic addresses, prints an assembled source code listing (if designated), and writes
assembled object to the designated cassette. Before this second pass, the assembler outputs
the two-line message:

** REWIND TAPE
**HIT'CR'TO GO —

Rewind the source-statement cassette and ready it for the second pass of the assembly. When
ready, press the carriage return to begin pass two. The source statements will be read in again.
During this pass symbolic addressing will be resolved using addresses from the symbol table
generated during the first pass. If the source program is too large to fit into the source
statement buffer, repeated reads of the source statement cassette will be made until the END
assembler directive or end-of-file is read, with the assembler performing operations on each
portion read. As the object buffer is filled up, the object code will be written to the object
cassette. When assembly is complete, control reverts back to the monitor and the monitor
period prompt will be issued. An example of assembler interaction at the system terminal is as
follows (this example designates dummy for source listing in order to show basic interaction
between Symbolic Assembler and user without a listing):

.SA 23,0
** REWIND TAPE Set up for second pass
**HIT ‘CR' TO GO —

- End of assembly, period prompt from monitor

~ 4.3.3.2 One-Cassette Operation

One-cassette operation requires more steps than a dual-cassette operation; thus, the latter
configuration is recommended. Operation is similar to the two-cassette operation as ex-
plained in paragraph 4.3.3.1,and it is recommended that the user read that paragraph first. A
flow chart of a one cassette operation is shown in Figure 4-3.

Single-cassette operation is sensed by the monitor from the assembler call command (same

cassette DEVNO for source-input and object-output indicates single cassette), and the
assembler uses interactive message and procedures accordingly. Prior to calling the

4-6

HAS
YES ND STATEMENT
EEN PROCESSE
?

NO

HAS
END OF FILE N0
EEN PROCESSE
?

YES

INSERT
OBJECT
CODE
CASSETTE

Figure 4-3. Flow Diagram Of One-Cassette Operation

NO

INSERT
SOURCE
CASSETTE

ENTER
ASSEMBLER

READ IN
SOURCE
STATEMENTS,
18T PASS

REWIND
SOURCE
CASSETTE

READ IN
SOURCE
STATEMENTS,
2ND PASS

IS
OBJECT CODE
BUFFER FULL

?

YES

INSERT
OBJECT CODE
CASSETTE

WRITE
OBJECT
CODE

INSERT
SOURCE
CASSETTE

assembler, the source cassette must be rewound with the tape before the program beginning.
When the assembler call is executed, the assembler begins reading in source statements from

cassette.

NOTE

Considerations for cassette operation in a one-
recorder/player configuration are provided in
paragraph 2.7. When “rewind” is stated herein, it
does not mention the need to unplug the motor
control plug. Remember to wind tape past
clear leader before recording on it.

During the first pass, the assembler will build the symbol table of symbol characters and their
addresses. The first pass is completed after the read of and END directive or an end-of-file
code. At this time, the assembler sends a message asking that the source cassette be rewound
to the beginning of the program so that the second pass can be initiated.

If the program is small enough, it will be necessary to change cassettes only once (unload
source cassette, load object cassette). In this small-program example, the entire program can
be contained in the source and object buffers without additional reads or writes (see Table
4-2). This operation will require:

(1)

(2)

(3)

(4)

Ready source cassette for first pass (rewind); execute assembler call. First pass
begins when carriage return is pressed. Entire source tape is read in. Message
prompt indicates end of first pass of source tape:

**REWIND TAPE
**HIT ‘CR' TO GO —

Set up for second pass of reading source. Rewind the source cassette, and enter a
carriage return to start second pass. After the second pass is complete, the
following message requests that the source cassette be removed and the object
cassette inserted:

**SWAP TAPES
**HIT ‘CR' TO GO —

Replace source cassette with a rewound object cassette (do not rewind the source
cassette as further source lines for this program may be on the cassette). Position
object tape past clear leader under printhead. Press the carriage return to start
writing of object to cassette.

When the monitor prints a period (.) on the terminal, program assembly is complete
and the user can call up another SDB program. Assembled object is on the cassette
in the unit.

If the source program is so large that the object buffer in memory fills up, successive readings
of source and writings of object are required in the second pass:

48

(1)

(2)

(3)

(4)

Ready source cassette for first pass (rewind); execute assembler call. First pass
begins when carriage return is pressed. Entire source tape is read in. Message
prompt indicates end of first pass of source tape:

**REWIND TAPE
**HIT‘CR"TOGO —

Rewind source tape for second pass of reading source. Enter a carriage return when
ready. Source is read in and object sent to object buffer. When the object buffer is
full, the following message requests a change from the source cassette to the object
casette:

**SWAP TAPES
**HIT ‘CR' TO GO —

Replace source cassette with object cassette (do not rewind either but have tape
past clear leader if initial input). Depress the carriage return; object will be written to
the object cassette. When complete, the next prompt asks to reinsert the source
cassette:

**SWAP TAPES
**HIT ‘CR' TO GO —

Replace the object cassette with the source cassette (do not rewind either). Depress
the carriage return; source will be read again from the source cassette. When the
assembler finishes with this segment of source, the message prompt appears:

**SWAP TAPES
**HIT ‘CR' TO GO —

Repeat steps (3) and (4) until assembly of the program is complete. Completion will be
indicated by a period (.) prompt at the terminal meaning that any SDB command can be
entered. Complete program object will be in cassette in unit.

NOTE

1. 'Because the assembler does not designate which
cassette to load next, it is recommended to mark
each cassette as “SOURCE” or “OBJECT” to
identify the tape contents.

2. When cassettes are removed unwound, take care
to prevent movement of the tape within the
cassette while removed. Such movement could
result in loss of data.

49

An example of assembler/user interaction is as follows:

SA2.2.0= - Assembler call (DEVNO 2 for source and object)
** REWIND TAPE ‘} Set up source for second pass
**HIT‘CR' TO GO — ; depress carriage return
** SWAP TAPES } Insert object cassette,
**HIT ‘'CR' TO GO — depress carriage return
@
L } - Successive source/object cassette changes
@
** SWAP TAPES } Insert source cassette,
**HIT ‘CR' TO GO — depress carriage return
** SWAP TAPES } Insert object cassette,
**HIT‘CR' TO GO — depress carriage return

- -
-

End of assembly, control returns to monitor

44 ASSEMBLY LISTING FORMAT

If designated in the assembler call, a source statement listing will be printed during the second
pass of the assembler. The listing format is shown in Figure 4-3. Paragraphs 4.4.1 to 44.7
explain the different columns and fields of the listing.

LOCATION COUNTER (HEXADECIMAL)
ASSEMBLED OBJECT CODE (HEXADECIMAL)
LABEL FIELD
INSTRUCTION MNEMONIC
OPERAND FIELD
J— COMMENT FIELD

00z
GO=4
0035
OO3=E4

0027

o033

009

FEOOQ
FEOZ
FEO4
FEOA&
FEOZ
FEOA
FEOC
FEGE

FE10
FELZ

OZEOQ
FFAD
D200
000A
O4C%
04CA
0zZ0C
0030

ZFAO
FEERO

ASSEMBLY LANGUAGE SOURCE STATEMENT NUMBER (DECIMAL)

(SAME AS TEXT EDITOR LINE NUMBER)

y]

THR LWPI WSP SET WORKESFACE FOIMTER

(1)

0 RO, 10 RO = TENS MULTIFLIER
CLR R? R¥ = NI, OF TRIES
CLR R10 R10O MO, F TRIES

i R12, 220 TMS =202 CRI) ADDR.

+ OUTPUT COFEMING MES=AGE
XOF @GMES=.,14 OFENIMG MEZZAGE

Figure 4-4. Assembly Listing Format

4-10

¥

4.4.1

442

443

444

445

446

447

ASSEMBLY LANGUAGE SOURCE STATEMENT NUMBER

This is the decimal line number of the source statement. This line number is the same
specified when using the Text Editor. This number shows the sequence in which the state-
ments were processed by the assembler.

LOCATION COUNTER

This is the hexadecimal number showing the memory address of the assembled code.
Location counter values are given only to locations containing executable code or data values.
This value is also used by the assembler to generate the symbol table locations.

The location counter value is absolute from the beginning of the program; thus, it normally
begins with location 00001g unless an AORG (absolute origin) assembler directive designates
an alternate address. If used, the AORG value will bias the location counter to the specified
memory address. The object code generated following an AORG directive is not relocatable,
and will force load to the specified address. The location counter also indicates the memory
address at which the object resides when loaded into memory without a loader bias. In Figure
4-4, the object code is 02E01g at memory address (M.A.) FE0016, FFAO16 at M.A. FE021, etc.
The location counter increments by 00021g, indicating the number of bytes from the
beginning of the program.

ASSEMBLED OBJECT CODE

The hexadecimal object code, resulting from the assembly process, is placed in the third
column. The corresponding source statement is shown in the next two columns to the right.

LABEL FIELD

This field contains an alphanumeric (A to Z, 0 to 9) symbol which may be used to reference the
instruction or data on the same line. The symbol will be given the value in the location counter.
Symbols can contain a maximum of four characters, the first of which must begin with an
alphabetic character (A to Z), and optional other characters must be alphanumeric. Labels
must begin at the first column of the source statement. This field is separated from the
mnemonic field by at least one space. A comment can begin in the first column of the label
field as explained in paragraph 4.4.7.

INSTRUCTION MNEMONIC FIELD

This four-character field contains assembly-language and assembler-directive instruction
mnemonics. It is separated from adjacent fields by at least one space.

OPERAND FIELD

This field contains the operands of the instructions and directives. It is separated from
adjacent fields by at least one space and contains no spaces.

COMMENT FIELD

This field contains comments that explain source-statement operation or its role in the
program. A comment can take up a full line by beginning the line with an asterisk (*) in the first
character position of the label field.

45

4.6

4.7

4.8

INSTRUCTION SET

The 72 instructions used by the microcomputers are assembled by the Symbolic Assembler.
This includes the DCA, DCS, and LIIM instructions used by the TMS 9940. Instructions are
listed in Appendix H. The Symbolic Assembler also recognizes two pseudo instructions:

® The NOP instruction that can be used in place of a JMP $+2 instruction which
essentially is a no-op (no operation). NOP can be used to replace code to be deleted
in memory or it can be used to force additional execution time. Both NOP and JMP
$+2 assemble to the machine code 10001g. The pseudo instruction uses no
operand.

e The RT instruction can be used in place of a B *R11 instruction (the normal return
from a branch and link subroutine). Both RT and B *R11 assemble to the machine
code 045B16. The pseudo instruction uses no operand.

LABELS

Labels are explained in paragraph 4.4.4.

MATHEMATICAL EXPRESSIONS

Mathematical expressions can be used in a limited basis. They must follow several rules:

® can be used only with valid symbols

® restricted to use with instructions of formats 1, 3, 4, 6, and 9; note that these formats
contain T fields that designate the type of addressing on the source or destination
operand (formats are explained in Appendix H, Instruction Set); for example: MOV
@TABL+2,@SUM-16

® cannot be used with immediate operands (no LI R2,VALU+18, or LWPI WP+32)

® total value of the expression cannot exceed 65,535 (FFFF16)

® are limited to only addition and subtraction expressions; multiplication and
division will not be interpreted.

® may not be parenthesized.
a cannot be used with the EQU assembler directive.
OBJECT CODE

Object format is generated in 16-bit hexadecimal segments, each segment preceded by a
loader tag. Loader tags and object format are explained in Appendix G.

All object records will contain a checksum field. This checksum is the two's complement of the
hexadecimal value of the ASCII code of all generated object codes and the loader tags in one
object record. The Relocating Loader will use this value to check the validity of each object
record loaded.

Obiject loader tags utilized by the Symbolic Assembler are0,1,7,9, B, and F.

4-12

ERRORS

As the assembly listing is being printed during the second assembler pass, errors found
during assembly will be noted on the assembly listing by an error number message following
the line in question. The error number will identify the error according to the codes in Table
4-2,

For object code corresponding to an invalid source line, the assembler will replace that
instruction with “NOP" (no operation) assembler pseudo-instructions which have an object
value equal to 100016. The NOP instruction merely tells the processor to execute the next
instruction: this allows the user to run his program during debugging, substituting other
object code for the NOP’s. One NOP will be substituted for each word in the invalid instruction.

An error total will be printed at the end of the listing. Error numbers are explained in Table 4-2
and Appendix E.

TABLE 4-2. ASSEMBLER ERROR CODES

ERROR
NO. EXPLANATION
1 Invalid Symbol: Symbols must be alphanumerical with the first character alphabetical. Use correct format.

2 Multiply Defined Symbol: Symbol is used to define location of a previous source line. Use other symbol.

3 Symbol Table Overflow: Symbol table cannot accept any further entries. Restrict quantity of symbols to
amount shown in Table 4-1.

4 Mnemonic Size Too Large: Op-code mnemonic is more than four characters.

5 Undefined Mnemonic: Op-code mnemonic is not one of the valid TM 930 mnemonics nor a defined XOP
mnemonic, Valid TM 990 mnemonics are listed in Appendix H.

6 liligal Register Number: Register number is greater than 15.

T CRU Instruction Displacement: Displacement of TB, SBZ, or SBO instructions is outside the range of —128
to +127 words.

8 Jump Instruction Displacement: Displacement of jump instructions is outside the range of —128 to +127
words.

9 Invlaid Shift count: Shift count must be from zero to 15.

10 Non-increasing Location Counter: Memory address in AORG assembler directive is a smaller value than

current value of location counter. This will occur when second AORG value is less than the value in a
prior AORG directive. Location Contents must be in ascending order.

1 Byte Value Too Large: Operand of BYTE assembler directive is a value larger thana 255.
12 No start of Text: Character string following a TEXT assembler directive did not start with a single quote.
Such character strings are delimited with single quotes. A single quote within a TEXT directive is

specified by two single quotes.

13 IDT Length Error: Character string of IDT assembler directive (at beginning of program) has character string
of more than eight characters.

14 Invlaid IDT: Character string of IDT assembler directive did not begin with a single quote.

15 lllegal TEXT Statement: TEXT statement contained character that cannot be interpreted.

16 lllegal XOP Number: XOP number above 15 specified. XOP numbers are from 0 to 15.

17 Undefined Symbol: Symbol was used in an instruction which had not been defined in the symbol field of
the source statement.

18 Input 1/O Error: Error in reading source from cassette; probably a checksum error or improper cassette
connection.

19 No END Directive: Must have an END directive as last statement in program (see paragraph F.2.7 in
Appendix F). Use Text Editor to input this statement.

20 lllegal mathematical expression used. Rewrite without mathematical expression. See paragraph 4.7.

4-13

410 ASSEMBLY OF EXAMPLE PROGRAM

Figure 4-5 shows the listing generated by the assembly of the example program written in the
Text Editor section of this manual. In the assembler call, the DEVNO'’s for both source and
object were the system terminal; thus, the object records are also printed out.

ninon IDT. “BLIMK”
nint 104n AORG >1040
niio 104n NZEND BEGH LWMPT 1000 WF ADDRE
1ndz 1000
niz2o 1044 020C =3 Fl1g2s>17 06 LED CEL ADDE
1045 1708
ni21 1042 CO041 ETRT MOy FRisE1l R1 ALL ZEROST?
0122 1048 1603 JHE DFE MOs. TLIEN OFF LETD
nig4 1nd 1D0O0D 0O BN 0 TUURH OM LED
niz2s 1nde 07Nt RETO RI ZET OM-0FF FLAG
o1ee 1050 1002 AMP RLIM 50 TO TIMEER
nie? 1052 1E0D OFF ZBZ 0 TURH OFF LED
0122 1054 n4ci EEE.. F1 REZET FLAG
0130 1056 0202 ELUN LI FE&2S00 ZET UF DELRY COUNTEFR
1055 Fa424
0124 10SA 0s02 LOORP DEC R2 IZ R2 ZERO 7
013& 10SC 16FE JHE LOOF HMOs DECEEMEMT RAGARIM
N1z 10SE 10F4 MP ETRT FEZTRART FROGEAM
014 1040 EMD BEGH
ERRORE=0

ONNOOEL THE

/— Object Records

I N4ORNZENBINONBOZOCELITOERCO41E1602EIDOOVFA2EF

104EENT0IEB1002B1IENOBO4CIEOE2NZEF4Z4ENENZE1EFERLOF41 1 0407F2FCF
CtIN4FBRNTOLRIO02RIFNORN4CIBOZNZEF424BOENZEISFERLIOF411 0407FZFCF

\— Colon indicates end-of-program; loader ignores any following object

Figure 4-5. Assembly Listing Of Example Program

414

5.1

5.2

53

SECTIONS
RELOCATING LOADER PROGRAM

GENERAL

This section explains the operation of the Relocating Loader program which can be used to
load object code into memory for execution or for programming onto PROM's. Features of the
Relocating Loader program allow the user to designate the following:

® Load Address: The address where the program is to be loaded into memory. This
address is used to determine the program start address when using the Debugger
or where the code is located when using the PROM Programmer.

® Load Bias: A bias to be added to the values of relocatable addresses in the program
being loaded. Because a program can be assembled as if it begins at relative
location 00001 and is to be executed beginning at a different address, then the
relocation must be resolved before execution. For example, if a program is
assembled as if it began at memory address 00001g but is loaded into memory for
execution beginning at address E0001g, it should be biased by the value E0001g,
and a symbolic address with an assembled address value of 00801g will have an
address value of E0801¢ after being loaded. If a segment of a program is being
loaded the bias will be to the beginning of program, not beginning of the segment.

NOTE
The TM 990/302 Symbolic Assembler does not
output relocatable object; its object is in absolute
form.

® Load Length: Length in bytes of object code to be input from the object cassette;
this allows loading only part of a program.

® Start Address: For an absolute object file, it is the absolute address of the first byte
to be loaded into memory. For a relocatable object file, it is equal to the value of the
second parameter (load bias) plus the relocatable address of the first byte to be
loaded into memory. This parameter is ineffective with the Relocating Loader if an
object file on cassette was generated from a source file without an AORG directive.

SYSTEM CONFIGURATION
A typical configuration is shown in Figure 5-1.

Communication to the system will be through the system console. The cassette recorder/
player will contain the object tape, wound to the clear leader.

CONSIDERATIONS

Memory addresses 000016 to 03FF1g are reserved for use by the operating system. Do not
attempt to load programs in this memory area.

Remove any EPROM connected to the TM 990/302 board or remove EPROM programming
power before reading data from cassette; otherwise, the EPROM could be mistakenly
programmed.

5-1

Be aware of the address at which the program will begin when (1) in the target system and (2)
in debugging using the Program Debugger (Section 6). The Relocating Loader will resolve any
address conflicts in relocatable code for either of these functions. With the assistance of the
Load Length and Start Address, a large program can be divided into segments and loaded into
memory. Usually a Load Length value greater than the length of the program will not affect the
normal loading of the program because the loading will stop at the end of the object
program. However, the sum of the Load Length and the Start Address should always be less
than or equal to FFFF16.

54 LOADERPROGRAM CALL AND OPERATION

The call to the Relocating Loader uses two lines. The first line requests the Relocating Loader
and specifies the DEVNO of the recorder/player containing the object cassette. The second
line issued to describe the four load criteria: Load Address, Load Bias, Load Length, and Start
Address (further defined in paragraph 5.1 above). All four criteria are assumed to be hexa-
decimal values.

The first line is a response to the period (.) prompt by the monitor. The second line is a
response to a question mark (?) prompt by the Relocating Loader. Both lines are completed
with a carriage return.

NOTE

If the second line parameters cannot be
interpreted by the Relocating Loader, the
question mark prompt will be reissued.

/

CONTROL

O O

OBJECT

Figure 5-1. Relocating Loader Block Diagram

The format is as follows (see paragraph 1.7):

.RL<DEVNO> <(CR)>
?<Load Address></\><Load Bias- ‘f\ - < Load Length>< /,\:h:Start Address> <(CR)>

52

55

EXAMPLES

(1)

(2)

This first example can be used to load into memory the example program that was
developed in the sections on the Text Editor and Assembler. Load a 201 byte
program at memory address 10401g. It does not need to be relocated because it was
assembled as if it began at memory address 10401¢ by using the AORG > 1040
directive (also, the Symbolic Assembler outputs only absolute object). This will set
up the program for being run on the Program Debugger with the Program Counter
set to 104016. Begin loading at the start of the program.

¥ Input object program from cassette 1
.RL 2
?1040,0,20,1040

Start to load at the beginning of object program
Load 201¢ bytes maximum
No bias needed, AORG >1040 used
Load code into memory starting at memory address 10401g
NOTE

The relocating Loader sets the Program Counter
to the entry address specified in the END
assembler directive of the program. Because the
example program uses this feature, the program
can be executed after being loaded by using the
EX (execute program) command of the Program
Debugger (paragraph 6.5.1)

Load entire 10001¢ byte program into memory starting at memory address 40016,
bias to starting at memory address E0001g (code is relocatable). The maximum load
length is 10001 bytes, and start the loading at the beginning of the object
program. (The bias of E0001¢ allows this program to be programmed onto an
EPROM which will be inserted into the system and executed with a beginning
program address of E0001g).

Input program from cassette 2

.RL 3
?400,E000,1000,E000

Start to load at the beginning of object program
Load 10001 bytes maximum
Bias to memory address E0001g (code is relocatable)

Load code into memory starting at memory address 40016

53

(3) Load entire 2048-byte program starting at memory address 100016 with no bias
(code is written in absolute form with an AORG >1000 directive specifying the
beginning load address). Note that spaces are used for field delimiters as well as
the comma. Object program is on cassette 1,

.RL 2
21000,0,800,1000

\—— Start load at the beginning of object program
Maximum length is 2048 bytes (8001g)
No bias (code is in absolute form)

Load code into memory at address 100016

(4) Load the second 100016 byte segment of a 200016 byte relocatable program into
memory starting at memory address 200016. Bias as if the entire program began
at memory address DO001g. Note that the bias for the beginning of the program
is given (not the beginning of the program segment). Object program is on cassette
2. There is no provision for placing relocatable code on audio cassette.

.RL3
?2000,D000,1000,E000

\Start load 10001¢ bytes after the beginning of
object program
Segment size is 100016 bytes

Bias for program start address is D0001g (code is relocatable)

Load program segment into memory at address 200016

(5) Load the last 1001 bytes of a 20001 byte program into memory starting at
memory address 200016. No bias is wanted as code is in absolute form. Object

program is on cassette 1. Program is AORGed to 0.

L2
?2000,0,100,1F00

Start load 1F001g bytes after the beginning of object
program

Segment size is 10016 bytes
No bias as code is in absolute form
Load program segment into memory at address 200016

5.6 ERRORCODES

If an error occurs during a load, an error message is written on the system terminal and the
load is aborted. Error messages contain a code which is defined as follows.

5-4

5.6.1 **ERROR51

Meaning: An invalid load tag was found. The loader interprets several load tags
including 9 (absolute load address), A (relocatable load address), B (absolute data),
and C (relocatable data). Load tags used by the 990 family of computers are
explained in Appendix G.

Recovery: Rewind cassette and re-execute the load operation. If the error reoccurs,
reassemble the program to obtain a new object on cassette.

5.6.2 **ERROR52

Meaning: Checksum error occurred. When the object code is formatted into object
records by the assembler, the last load tag field of each record is a checksum value
which is the two’s complement of the sum of all ASCII character values representing
the object code; this includes all characters beginning with the first tag character in
the object record up to and including the 7" tag of the checksum field. The loader
makes a similar computation when loading the object and compares the results to
the checksum value. If the comparison is a match, the loaded data is considered
valid.

Recovery: Rewind cassette and re-execute the load operation. If the error reoccurs,
reassemble the program to obtain a new object on cassette.

NOTE

For both errors 51 and 52, clean the tape heads of the recorders (if
possible) before re-executing the load operation.

55

6.1

6.2

SECTION 6
PROGRAM DEBUGGER

GENERAL

The TM 990/302 Program Debugger allows the user to monitor the execution of his program,
check for problems and (if necessary) patch code in question, then resume program execution
using the new values. The Debugger features include: (1) execution of one or more in-
structions starting at a designated Program Counter value, (2) single-step execution, (3)
execute program to a specified instruction location (breakpoint), (4) trace program execution
with hardware register printout after each instruction executed, (5) record conditional-jump
caused path changes, and (6) inspect and change contents of memory, the hardware registers,
the workspace registers, or Communication Register Unit (CRU) values. The Relocating
Loader program (Section 5) is needed in order to load into memory the object to be debugged.
Commands under the Debugger include (applicable paragraph number is in parentheses):

® EX Command: Execute program unconditionally (6.5.1)

® |CCommand: Inspect/change CRU values (6.5.2)

® IMCommand: Inspect/change memory contents (6.5.3)

® IR Command: Inspect/change hardware register values (6.5.4)

e IW Command: Inspect workspace register (6.5.5)

® RUCommand: Conditional jump run, record path changes (6.5.6)

e SBCommand: Set breakpoint for execution limit (6.5.7)

@ ST Command: Software trace where the three hardware register contents are
printed out during each instruction execution (6.5.8).

SYSTEM CONFIGURATION

Minimum system configuration would include one cassette and a terminal as peripherals.
Object would be loaded into memory with the Relocating Loader, and the debugged object
would be written back to the same cassette using the Dump Memory program (Section 8).

® connectthe cassette and terminal as explained in Section 2.

e load an object program at the desired beginning address using the Relocating
Loader as explained in Section 5.

e insert the tape which will receive the debugged object in the recorder/player, and
rewind it to clear leader, Paragraph 2.7 describes correct tape handling procedures.

6-1

6.3

6.4

6.5

6.5.1

6.5.2

CONSIDERATIONS

All numerical inputs to commands must be hexadecimal values without the preceding
greater-than (>) sign. For example, to inspect fifteen bits at CRU address 1001g, the value F
(not 15) must be specified:

?1C 100,F

Program execution begins at the address values in the hardware registers. These registers are
first set by the IR (inspect registers) command described in paragraph 6.5.4.

PROGRAM DEBUGGER CALL
Answer the monitor period prompt with the following:
.DP<(CR)> Finish with a carriage return

The Program Debugger will respond with a question mark (?) prompt asking for one of the
Debugger commands. For example:

.DP «———Call Debugger
?7 - Debugger prompt asking for command

DEBUG PROGRAM COMMANDS

EXECUTE MEMORY COMMAND (EX)

The EX command causes program execution to begin at the Workspace Pointer (WP) and
Program Counter (PC) address set using the IR (inspect hardware registers, paragraph 6.5.4)
command or at the PC value set by the Relocating Loader when a program entry address is
specifed in the END assembler directive of the program.

Format:
?7EX <(CR)>
NOTE

The example program developed in the section
on the Text Editor and Symbolic Assembler, and
loaded by the Relocating Loader can be executed
with the EX command if properly assembled and
loaded. When executed, the LED on the TM 990/
302 board (next to edge connector P2) should
blink.

INSPECT/CHANGE CRU COMMAND (IC)

This command causes a pattern of 1 to 16 bits to be displayed at a CRU software base address
and allows the user to write a 1-to-16 bit pattern to the CRU software base address displayed.
The address entered is the unshifted register 12 contents, not the CRU bit address (i.e., the
CRU bit address is the register 12 16-bit address shifted one bit right). For a further explanation
of the CRU and the instructions that read and write to it, see the programming section of your
microcomputer user’s guide.

6-2

The command displays a 16-bit value. After displaying the value read at the CRU, the
printhead spaces to the right and awaits one of the following:

® aspace causing the same CRU address to be read again and the value displayed
@ acarriage return causing a return to the Debug Program scanner
® a new hexadecimal number to be written to the address displayed followed by a
space or carriage return causing the action specified in the above two descriptions
for space and carriage return.
Format:

?2IC[A]<CRU Address> {‘,\}<[N0- of Bits] > <(CR)>

If 0 used or no entry, 16 bits displayed

Examples:
?IC 120 Show value at CRU bits 00901 to 009F 16 (TMS 9901)
0120=FFFF Carriage return, return to command scanner.
?1C 120,8 Show value at CRU bits 00901 to 009716
0120=00FF 0O Enter a value of zero, terminated with a space
0120=0000 Carriage return, return to command scanner
71IC 120 Show value at CRU bit 00901 to 009F16
0120=FF00 Carriage return, return to command scanner
7

If the number of bits specified is 0, all 16 bits will be read. The valid bit numbers are 0-F1g.

The CRU value displayed will show the CRU bit values beginning at the address specified. If
one bit address is requested, its value (a one or zero) will be shown in the rightmost bit
(least-significant bit or LSB) of the displayed value and the remainder of the displayed
value is zero filled. If 2 to 16 address bits are to be displayed, succeeding addresss bits
will be shown right to left as depicted below:

?1C 80,6
0080=003A
0 3 4 7 8 14 12 15
[0 1 1 QPa0r10 10 0 ikrd 10 1 0] _l———CHUbitaddress
/ l—-c 40
Buffer register ——» 1 41
containing CRU 0™
values 1 43
» 1 44
= 1 45

6-3

6.5.3

INSPECT/CHANGE MEMORY COMMAND (IM)

This command has two modes. In the first mode, the contents of one 16-bit memory address is
displayed, and the user can select further action by the following:

® Aspace-bar input causes the next word to be displayed.
® A minus-key input causes the previous word to be displayed.

® A carriage-return input causes a return to the Program Debugger command
scanner.

In the second mode, a block of such 16-bit memory contents are displayed, and the user can
select further action by the following:

® A space-bar input causes a pause during the display process. Another space bar
entry will continue it.

® An ESC-key input causes the early termination of the display process.
Formats:

?IM[A]<Memory Address> <(CR)>

\——causes contents of one memory address to be displayed.

?IM[A] <Beginning Address> {Q}[Ending Address>] <(CR)>

\—causes contents from “beginning address” to “ending
address”’ to be displayed

Examples:
(1) ?2IM1000 == finish with carriage return
1000=FFFF = carriage return entered
7?7 - prompt for next command
(2) ?IM 1000
1000=FFFF space entered
1002=FF00 space entered
1004=00EE carriage return entered
? prompt for next command

(3) ?IM 100,110
0100=FFFF FFOO OOEE 0000 AA11 AAAO EE11 8888

0110=EEAA
?
(4) ?IM 100
0100=FFFF EE new value 00EE entered, space entered
0102=FF00 0 new value 0000 entered, space entered
0104=00EE — minus entered
0102=0000 prints changed contents of M.A. 0102
? CR returns to command scanner

6-4

654

655

INSPECT/CHANGE HARDWARE REGISTERS (IR)

This command is used to set up the hardware registers before executing the execute (EX)
command, the software trace (ST) command, the conditional jump run command (RU), or the
set breakpoint (SB) command. To change the displayed register, enter a new value next to the
dsplayed value. To repeat the displayed register’s value, enter a minus (—) sign.

Format:
?IR <(CR)>
Examples:
(1) ?IR finish with a carriage return
W=0700 Workspace Register displayed, space entered
P=0122 Program Counter displayed, space entered
S=1000 Status Register displayed, space or CR entered
? prompt for next command
(2) 7IR
W=0700 6A0— new value, minus entered
W=06A0 new register value displayed, CR entered
T return to command scanner
(3) 7R
W=06A0 new value shown as in above command, CR
? entered

INSPECT/CHANGE WORKSPACE (SOFTWARE) REGISTERS COMMAND (IW)
This command allows the user to inspect and change one or all 16 of the Workspace Registers.
These software registers are located in memory beginning at the address specified by the
current Workspace Pointer value or as defined using the inspect/change hardware registers
debug command (IR). Contents will be displayed as contents of memory addresses instead of
a specific register. Specify either one register number after the IW command or specify only
the IW command to inspect all register contents. The command is completed with a carriage
return. Options are available when a register is displayed.

® space bar entry will display contents of next register

® minus key (—) will display contents of previous register

® hexadecimal value entered will change contents of displayed register to the entered
value

Formats (see paragraph 1.7):

7 IW[A] [Register No.] <(CR)>

6-5

6.5.6

Examples:
(1) Inspect one register with WP = 200016

?2IW6 finish with carriage return
200C=2314 finish with carriage return

(2) Inspect and change register values

?IW6

200C=2314 R6 displayed, press space bar

200E=9887 BBBB R7 displayed, enter new R7 value, press space bar
2010=0EEE CCCC R8displayed, enter new R8 value, press space bar
2012=5555 — R9 displayed, enter minus sign to display R8
2010=CCCC— R8 displayed showing change

200E=BBBB R7 contents, finish with carriage return

? return to command scanner

(3) Print out entire Workspace Register values with WP at M.A. 200016

?2IW «——finish with carriage return, print all registers (default)
2000=0113 EEDD F435 0000 AAAA 2314 9887 OEEE
2010=5555 4444 3476 O5FFA 1111 2222 2333 FFF1

RUN PROGRAM, MONITOR CONDITIONAL JUMPS (RU)

This command causes controlled program execution beginning at the value in the Program
Counter, which can be set using the IR (inspect hardware register) command. The run
command operand is the number (in hexadecimal) of instructions to be executed, with no
default value; a number must be specified. This conditional jump run command provides the
ability -to record the data path changes caused by conditional jump instructions (excludes
unconditional jump or JMP instruction). During the program execution each instruction is
checked to see if it is a conditional jump instruction and also to see if that conditional jump
instruction causes a path change (jump condition supported by Status Register contents). If
so, the address of that jump instruction will be recorded on a 16 word buffer. After the
specified number of execution steps is completed, the contents of the current hardware
registers (WP, PC, and ST) and the buffer is printed out. The buffer contents are as follows: the
first contains the most recently occurred conditional jump instruction, the second word
contains the second most recent one, and so on. The maximum number of path changes that
can be recorded is 16. If more than 16 path changes have occurred, the most recent 16 changes
are recorded. If there are less than 16 path changes, the unused buffer spaces are filled with
Zeros.

Format (see paragraph 1.7):

? RU[A] <N><(CR)>

Number (in hex) of steps of execution.

After executing the specified number of instructions, control will return to the Debug Package
Command Scanner, which issues its question mark prompt.

6-6

6.5.7

Examples:

?IR finish with a carriage return
W=0710 space entered
P=0604 510 =— set Program Counter to the execution-start

address, terminated with carriage return

?RU 46 Run for 461g instructions

0710 0554 1000 = WP, PC, & ST contents at run completion
0290=054E 0532 0524 0000 0000 0000 0000 0000 3 conditional
02A0=0000 0000 0000 0000 0000 0000 0000 0000 jumps executed
?

The above example showed that 461¢ instructions have been executed and three path
changes recorded. The most recent path change is in memory address 054E1¢.

SET BREAKPOINT COMMAND (SB)

This command allows the user to designate one or two memory addresses at which program
execution will halt and the contents of the hardware registers will be printed out. When a
breakpoint is executed, all breakpoints are cleared, and new breakpoints must be re-entered, if
desired.

The breakpoint command substitutes the machine code for XOP 15 at the address of the
breakpoint(s). When the breakpoint is executed, the hardware registers contents are printed
out (WP, PC, and ST register contents), the original contents at the breakpoint address are
restored, and command returns to the Debugger Package command scanner. Execution of
this command follows this sequence:

® Enterthe IR command to set up the hardware registers to the beginning of program
execution.

® Enter the SB command specifying the hexadecimal memory addresses where the

[breakpoints are desired. When the command is terminated with a carriage return,

program execution starts.

® When any breakpoint occurs, the hardware-register contents will be printed out,
control will return to the command scanner with the question-mark prompt issued,
and all breakpoints will be cleared.

Format:

?SBIA] <Breakpoint Address> {A} [Breakpoint Address] <(CR)>

\ \

hexadecimal values

Examples:
(1) ?IR finish with carriage return

W=0710 = set up workspace pointer and the start
address of the program to be executed

P=0342 05A0

?7SB 05F4 = set address of last instruction to be executed

0710 05F4 1000 ««———— breakpoint printout of register contents
? - return to command scanner, breakpoints cleared

6-7

659

(2) ?SB610 finish with carriage return
0710 0610 1000 «———breakpoint printout of register contents
? - return to command scanner, breakpoint cleared

SOFTWARE TRACE COMMAND (ST)
This command causes the contents of the Workspace Pointer, Program Counter, and Status
Register to be printed out after execution of each instruction. Controlled program execution
begins at the value in the program counter, which can be set using the IR command. The ST
command operand is the number (in hexadecimal) of instructions to be executed, with a
default value of one instruction if no operand is specified. The trace function is provided by
printing out the hardware register contents after each instruction execution. To use this
command:

® |nitialize the hardware registers to the start of program execution.

® Enter the Software Trace Command.
At each instruction execution, the WP, PC, and ST contents will be printed.
Formats (see paragraph 1.7):

? ST [A][N] <(CR)>

Number of steps of execution (hexadecimal, default = 1)

Example:

Execute 4 instructions under software trace.

?IR Finish with a carriage return

[W=0710 Space entered
P=0322 5EE Change program counter value, CR exit
?7ST3 = Trace 3 instructions

0710 O5EE 1000
0710 05F0 4000
0710 05F2 2000
? - Return to command scanner

CAUTIONS

1. Execute the software trace on user programs
only. Do not execute this program on one of
the SDB utilities.

2. This command cannot be stopped before
completion of all instructions executed (can-
not be stopped by ESC key).

EXIT USING ESC KEY

To exit a debugger command, press the ESC key and control reverts to the debugger
command scanner. A second ESC key entry hands over control to the monitor.

6-8

7.1

SECTION 7
EPROM PROGRAMMER

GENERAL
This program allows the user to program the following EPROMs:

e TMS 2708 EPROM

e TMS 2716 EPROM

e TMS 2508 EPROM

® TMS 2516 EPROM

® TMS 2532 EPROM
Prior to programming these EPROMs, the user object program must be loaded into memory
using the Relocating Loader (Section 5). This program will have gone through the software
development cycle of generation by text editing, assembly into object, load object into
memory and program debug, then repetition of this cycle (edit-assemble-load-debug) until
final approval of the object program. The second consideration in paragraph 7.3 explains a

restriction on reading in data to be programmed.

Two hardware selections must be made before the erased EPROM can be inserted and the
EPROM programming software called up. These include:

® selection of the correct personality card for the EPROM type

® insertion of jumpers on the personality card corresponding to the specific EPROM
to be programmed.

It is assumed that the system memory will have been correctly configured according to the
memory mapping switch on the TM 990/302 board (see paragraph 2.3.3.1).

When the system is configured properly, the EPROM Programmer can be called up. It has four
basic features available to the user:

® program the EPROM with the contents of the designated memory addresses in
either inline mode (consecutive byte addresses) or parallel mode (all even bytes or
all odd bytes). The values programmed into EPROM are automatically compared to
the designated memory address upon completion.

® compare EPROM contents to memory contents; this is especially useful in checking
a just-programmed EPROM for correct data transfer and is an automatic feature of
the EPROM programmer

® read EPROM contents into memory (no copy verification is made)

® verify that the EPROM is erased (all ones)

-1

7.2

73

74

7.5

75.1

SYSTEM CONFIGURATION

System configuration should consist of the following:

® TM 990/302 and microcomputer boards with program to be placed into the EPROM
already loaded into RAM using the Relocating Loader (Section 5)

® +35to +55V power supply
® terminal for interactive control
® personality card for the EPROM to be programmed
® erased EPROM
This configuration is shown graphically in Figure 7-1.
CONSIDERATIONS

® The EPROM Programmer requires a 35 to 55 volt power supply. The TM 990/518
power supply provides this power requirement.

® Bits on the EPROM can be mistakenly programmed if the EPROM is inserted in the
personality card attached to the TM 990/302 board while EPROM programming
voltage is applied to the board and data is being read from a cassette. This
necessitates that the program to be programmed on the EPROM be read from
cassette while the EPROM is not connected to the TM 990/302 board or while
EPROM programming power is not connected to the board.

EPROM ERASURE PROCEDURE

The EPROM can be erased by exposing the chip to ultraviolet light (wavelength of 2537
angstroms) through the transparent window on the chip. Recommended exposure is ten
watt-seconds per centimeter which is equivalent to approximately 30 minutes exposure to a
filterless model S52 short wave ultraviolet lamp approximately 2.5 centimeters above the
EPROM. EPROM erasure state is all ones.

SYSTEM SETUP

EPROM PERSONALITY CARD

An EPROM personality card attaches to the TM 990/302 SDB board at connector P3 as shown
in Figure 7-2. This card provides the socket to hold the EPROM as well as interface circuitry

between the SDB and the EPROM.

There are two personality cards available for the TM 990/302 SDB. As shown in Table 7-1, each
card is used for programming more than one EPROM type.

7-2

“»

752

TABLE 7-1. PERSONALITY CARD CHARACTERISTICS

FOR PROGRAMMING PART NUMBER
TMS 2708 and TMS 2716 TM990/514
TMS 2508, TMS 2516, and TMS 2532 TM 990/515

To insert the personality card, press the female connector on the back of the personality card
on to connector P3 (left side of the TM 990/302 Board). Note the top and bottom of card as
shown in Figure 7-2. LED DS1 will glow when the personality card is properly attached.

INSERT PROM INTO PERSONALITY CARD, DESIGNATE PROM MODEL

Insert the EPROM to be programmed into the personality card as shown in Figure 7-2. Align
the pins with pin one of the EPROM in the top right (facing the card) of the socket on the
personality card. Take care to prevent pins from being bent.

Two personality cards, as shown in Table 7-1, are used to hold two different EFROM models.
To designate which model is being programmed, position the three jumpers on the right side
of the card onto the pins corresponding to the PROM model as shown in Table 7-2.

TABLE 7-2. JUMPER PLACEMENT ON PERSONALITY CARD

EPROM MODEL CARD NUMBER JUMPER PLACEMENT ON CARD
TMS 2708 TM 990/514 2708
T™MS 2716 TM 990/514 2716
TMS 2508 TM 990/515 2508
TMS 2516 TM 990/515 2516
TMS 2532 TM 990/515 2532
POWER
SUPPLY

T™ 990/302 BOARD
(CODE TO BE T™ 980/10X BOARD
PROGRAMMED IN RAM)

o o sifing

PERSONALITY CARD TERMINAL FOR INTERACTIVE
COMMUNICATION

Figure 7-1. Typical EPROM Programming Configuration

7-3

CONNECTOR P3 OF TM 990/302 BOARD

o -] SET THREE JUMPERS TO RIGHT OR LEFT

* POSITION ACCORDING TO EPROM TYPE ?

i
2716_ 2708 /
T
)

DS2

L.E. D. GLOWS WHEN CARD _/ PIN 1 0;] L‘E'Dbﬁ'ﬁg A
INSERTED CORRECTLY ON EPROM IN e i
TM 990/302 BOARD UPPER RIGHT
CORNER OF
SOCKET

Figure 7-2. Personality Card

75.3 PERSONALITY CARD LED'S

7.6

If the personality card is inserted incorrectly (e.g., upside down), the LED marked GO on the
card will be extinguished. When inserted correctly, this light will glow.

While the EPROM is being programmed, the following LED's will illuminate:
® LED on the right side of the personality card
® LEDonthe TM 990/302 board (next to edge connector P2).
COMMANDS

The EPROM Programmer is called by the EP mnemonic request to the command scanner of
the SDB monitor. The EPROM Programmer responds with a question mark:

EP
?

finish with a carriage return
question mark response

J} A

One of four responses can be input to the question mark (?) inquiry:
e PP Program the EPROM (paragraph 7.6.1). This response also compares EPROM
contents to memory contents (the same as the CE command below) when
programming is complete

e CE Compare the EPROM contents with the contents of memory; this can be used
to verify data in a just-programmed PROM (paragraph 7.6.2)

7-4

7.6.1

® RE Read the contents of the EPROM into memory; this can also be used for PROM
data verification (paragraph 7.6.3)

e VE Verify that the EPROM is erased (all ones) (paragraph 7.6.4)

Commands PP, CE, and RE use the same five- to six-field format as explained in paragraph
7.6.1 for the PP command. Parameters in the second line are completed with a carriage return.

NOTE
If the second line parameters cannot be inter-
preted by the EPROM Programmer, the question
mark prompt will be reissued.

PROGRAM THE EPROM COMMAND (PP)

The EPROM programming software is called by the mnemonic PP followed by five or six fields
of description data in answer to the question mark inquiry on the terminal:

Format (see paragraph 1.7):

EP = finish with a carriage return
7PP <EPROM typeb{/}}amem stan}{‘,\}mem stop{f}}(EPROM stan>{‘?}-cP/|>{/.\}[byte start]<(CR)>
No comma or space

The fields in the second line of the EPROM programming call require specific data before the
EPROM programming will begin. When programming is complete, the EPROM Programmer
will compare EPROM contents to memory contents, and give a comparison result similar to
the CE command (paragraph 7.6.2). The fields in the second line are explained below in their
order of appearance. After each explanation is an example using the command fields so far
covered.

?PP EPROM type This field specifies the four-digit number of the EPROM to be programmed
(2708, 2716, 2508, 2516, or 2532). The software will then verify that the
correct personality card is being used and the correct jumpers are in place
on the personality card for the EPROM being programmed (see paragraphs
7.5.1 and 7.5.2 for personality card setup). For example:

IER
?PP2708,

NOTE

Ifthe card or jumpers are not correct, the question
mark prompt will be reissued.

Mem Start This field specifies the start address in memory that contains the program to
be programmed in the EPROM. This is a hexadecimal number not preceded
by a greater-than sign. For example:

EF
?PP2708,1000,

7-5

Mem Stop

EPROM Start

P/l

This field specifies the last address in memory that contains the program to
be programmed in the EPRCM. This is a hexadecimal number not preceded
by a greater-than sign. For example:

EE
?PP2708,1000,102C,

program the EPROM with the 45 bytes in
M.A. 100016 to 102C16

This field specifies the EPROM address of the first byte in the EPROM to be
programmed.

This allows partial programming of the EPROM (thus allowing pro-
gramming of the EPROM in stages), if desired, since only the program area
specified from the Mem Start to the Mem Stop fields will be programmed at
any one time. The number must be hexadecimal, not preceded by a greater-
than sign. If the address is too large, programming will be repeated. There is
no provision to determine if any of the EPROM area has already been
programmed. There is no need to specify an EPROM ending address, since
this will be determined from the memory area containing the code
(determined from the Mem Stop-Mem Start value). For example:

EP
?PP2708,1000,102C,4C,

/program the EPROM with the contents of memory
addresses 100016 to 102C1¢ beginning at EPROM address
004C1p

In this field, place an | for in-line mode or a P for parallel mode. These two
modes are shown graphically in Figure 7-3. In the in-line mode, the EPROM
is programmed with continuous contents of the memory addresses
specified. In parallel mode, the EPROM is programmed with either the even
or odd memory address contents (this allows 16-bit machine code to be
contained in two 8-bit even- and odd-byte EPROM sections, the
addressing configuration of TM 990 microcomputer boards).

If the | mode is given, EPROM programming begins in the in-line mode
immediately. If the P mode is given, another inquiry follows (this inquiry).
For example:

.EP
?PP2708,1000,102C,4C,| = finish with CR

NOTE

In-line mode with programming execution be-
gins when carriage return is executed; if P
(parallel) mode given, one more inquiry is issued
(explained below, page 7-8).

7-6

&)

MEMORY LIMIT —»

MEMORY LIMIT

s

RAM MEMORY START BYTE

MEMORY EVEN BYTE
/—MEMORY ODD BYTE

O

X

-

/— EPROM BY TES

\

<+— EPROM START

(a) In-Line EPROM Programming

/— EPROM BYTES

/- RAM MEMORY START BYTE
%

O-

O—

O_

7

(b) Parallel EPROM Programming

(Either Even or Odd Memory Bytes

Programmed on EPROM)

7-7

Figure 7-3. In-Line And Parallel EPROM Programming

-<— EPROM START

Byte Start

This field is necessary only if a “P” response is entered in the P/l field.
Because the parallel mode will program the EPROM with either the even-or
odd-byte memory address contents, this must be specified before pro-
gramming. The response to this command designates whether to start at
the beginning byte specified in the Mem Start field or at the beginning byte
+ 1in thatinquiry. A 0" (zero) response means to start at the starting byte
in the Mem Start field, and a ‘1"’ (one) entry means to start at starting byte +
1. For example, if the memory starting byte is even, then a O response would
start the programming with even bytes beginning at the start byte specified
(100016 in the accompanying examples above), and a 1 response would
start programming with odd bytes beginning at the start byte + 1 specified
(10011g in the accompanying examples). Conversely, if the start byte was
odd, then a 0 response would program using odd-numbered memory
bytes, and a 1 response would program using even-numbered memory
bytes. The carriage return following this inquiry initiates EPROM memory
programming in the parallel mode. Figure 7-4 depicts data transfer from
memory for both a 0 or 1 answer with the memory bounds starting at an
even address. The following is a list of inquiries for a completed EPROM
programming procedure in the parallel mode:

EP
?PP2708,1000,102C,4C,P.0 = followed by a CR

Zbeg'mning at EPROM address 004C1¢, program in the contents
of the even memory addresses from 100016 to 102C16

During programming, the LED’s on the personality (Figure 7-2) and TM 990/302 card (Figure
1-1) will illuminate. When programming is complete, the EPROM Programmer will compare
the contents of the EPROM with the contents of memory to verify data programmed. This
comparison will be run ten times. If data is found to be erroneous, a message will be printed of
the memory address and contents (first) and also the corresponding EPROM contents
(second). This printout will occur ten times if the error is found during all of the ten com-
parisons. When complete, the message “DONE" is then printed. For example:

EP

?PP2708,1000,102C,4C,P,0

100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
DONE

?

0058=40

0058=40

0058=40 EPROM BYTE 00581¢ was programmed with
0058=40 data from memory byte 100C1¢, but a
0058=40 comparison on contents after programming
0058=40 shows the data differs. Error found

0058=40 during all ten comparisons.

0058=40

0058=40

0058=40

7-8

MEMORY LIMIT

MEMORY LIMIT

uat <«+— EPROM START

RAM MEMORY START BYTE
/ / EPROM BYTES
O
O
O_
O
O-

o= .
= O .
A

(a) Program Even Memory Bytes into EPROM

RAM MEMORY START BYTE
/— EPROM BYTES

O <— EPROM START
O
O-_
@
O_ e
O o,
O
— O_ =
F

(b) Program Odd-Numbered Memory Bytes into EPROM

Figure 7-4. Data Transfer In Parallel Programming Mode

7-9

7.6.2

NOTE

If the EPROM fails the comparison immediately
after programming, the user should wait about
one minute to allow the EPROM to cool. In some
cases excessive heat caused by programming the
EPROM may cause the data to be read incorrectly.
The user should wait a few minutes and verify the
data using the ‘CE’ command.

COMPARE EPROM CONTENTS COMMAND (CE)

This command compares the contents programmed in the EPROM to the corresponding
contents of memory in order to verify that the EPROM has been correctly programmed. This
comparison is run ten times. Command format is the same as for the EPROM Programming
command explained in paragraph 7.6.1. When the comparison is complete, control returns to
the EPROM programmer command scanner and a question mark (?) prompt is issued.

7.6.2.1 Format

7CE<EPROM type> {“}< mem start> {A} <mem stop> {/}}cepnom start> {1}}<Pn>{’.‘}[bwe start]<(CR)=

no comma or space

EPROM type: 2708, 2716, 2508, 2516, or 2532

® Mem Start:hexadecimal start address of memory contents to be compared

® Mem Stop: hexadecimal final address of memory contents to be compared

@ EPROM Start: starting byte in the EPROM to be checked (this will be the EPROM
byte programmed with the contents of the byte in the mem start field), a hexa-
decimal number

® P/I: parallel or in-line mode (see paragraph 7.6.1 and Figure 7-3)

® Byte Start: Mem Start address or Mem Start address + 1 for parallel mode.

These fields are explained in detail in paragraph 7.6.1. Note that these hexadecimal numbers
are not preceded by a greater-than sign.

If contents of a byte in the EPROM differs from the contents of the corresponding memory
byte, a one-line message is written showing the contents of both the memory address and
EPROM address (in that order) for each mismatch found. Since this comparison is run ten
times, the error message can be written that many times. When the entire compare process is
complete, the message “DONE" is printed and control returns to the SDB command scanner.

7-10

7.6.2.2 Examples

(1)

(2)

.EP finish with carriage returns
?CE2708,1000,102C,4C,P,0

100B=40 0057=00 comparison discrepancies found during
100B=40 0057=00 all ten comparisons.

100B=40 0057=

100B=40 0057=00
100B=40 005¢=00
100B=40 0057=00
100B=40 0057=00
100B=40 0057=00
100B=40 0057=

100B=40 0057=00)

?DONE\— memc%— EPROM

addr. and addr. and

contents contents
.EP = finish with carriage return
?CE2716,2000,2400,0,!
DONE = EPROM/memory comparison okay
? return to programmer command scanner

7.6.3 READ EPROM CONTENTS INTO MEMORY COMMAND (RE)

This command reads the contents in the EPROM into a designated memory area. This can be
used with the Dump Memory command (Section 8) in order to store object on cassette for later
debugging, EPROM programming, etc. Command format is the same as for the EPROM
Programming command explained in paragraph 7.6.1. No check is made to verify correct data
transfer. When data transfer is complete, the word “DONE" is printed out and control returns
to the SDB monitor and a period (.) prompt is issued.

7.6.3.1 Format

?RE<EPROM type= {A} <mem start> {f,\}<mem stop>{‘.\} <EPROM start> {f}}c P/> {I.\}[byte start]<(CR)>

Nno comma or space
EPROM Type: 2708, 2716, 2508, 2516, 2532, or 9940

Mem Start: hexadecimal start address of memory area to be written to
Mem Stop: hexadecimal final address of memory area to be written to

EPROM Start: starting byte in the EPROM to be read into memory (hexadecimal
value)

P/l parallel or in-line mode (see paragraph 7.6.1 and Figure 7-3)

Byte Start: mem start address or mem start address + 1 for parallel mode.

711

These fields are explained in detail in paragraph 7.6.1.

Only the memory area specified will be written to with data from the EPROM beginning at the
EPROM address specified. If the memory area is larger than the EPROM contents to be stored,
memory bytes not written to will not be altered. If the P mode (parallel) is requested, data
transfer will be from the EPROM bytes to:

e every other byte beginning at the EPROM start address if a 0 (zero) is specified in the
“Byte Start” field

® every other byte beginning at the EPROM start address + 1ifa 1 (one) is specified in
the “Byte Start” field.

7.6.3.2 Examples

(1) .EP
?RE2516,2800,29FF,0,! finish with a carriage return

DONE \
? transfer the EPROM contents, in inline mode,

beginning at EPROM address 0, to memory addresses
280016 to 29FF16

(2) Inthis example, transfer the contents of two TMS 2708 EPROM's (1K by 8 each) into
memory. The EPROM'’s have been programmed in the parallel mode; thus, one will
be read into the even-number bytes and the other read into the odd-number bytes,
beginning at memory address 1000.

EP
?RE2708,1000,17FE,0,P,0

DONE load at M.A. 10001, 100216, 10041,....17FE16
EP

?RE2708,1000,17FF,0,P,1

DONE load at M.A. 100116, 100316, 100516,...,17FF16
? «—_return to command scanner

Note: the second EPROM reading sequence could also have been:
?RE2708,1001,17FF,0,P,0

7.6.4 VERIFY EPROM AREA IS ERASED COMMAND (VE)

This command checks designated memory addresses in the EPROM for an erased condition
(all ones). The format consists of the mnemonic VE followed by the EPROM type and the
hexadecimal beginning and ending addresses of the EPROM area to be verified (no greater-
than sign precedes the hexadecimal number). The command is completed with a carriage
return. As the case with the CE command (paragraph 7.6.2), the specified condition is checked
for ten times, and discrepancies are printed out as many times as found. If non-erased bytes
are found, the addresses and their contents are printed out; no printout indicates all addresses
checked were erased. When the verification process is complete, the word “DONE" is printed
out and control is returned to the SDB command scanner with a period (.) printed on the
terminal.

7-12

i 7.6.4.1 Format

?VE <EPROM Type> {4} <Start Address> {4} <Ending Address> <(CR)>

[

7.6.4.2 Examples

(1)

(2)

no comma or space

.EP

?VE2716,0,7FF =

0710=EF B

074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF

074B=FB 2)

DONE
s e

finish with a carriage return

bytes not fully erased
(found during all ten checks)

return to command scanner

-

EP
?VE2708,400,7FF
DONE

?

all bytes found erased

7-13

L

8.1

8.2

83

SECTION 8
DUMP MEMORY COMMAND

GENERAL

This program dumps object programs in memory to a cassette. The object programs are
dumped in absolute format which is not relocatable in a later load by the Relocatable Loader
(i.e., the object code will not have relocatable code tags; thus, to later reload and execute the
code, it must be reloaded at the absolute address at which it can properly execute).

FORMAT

The format is on two lines. The first line is in response to the period (.) prompt by the monitor.
This line specifies the Dump Memory command and the DEVNO of the cassette to which the
object will be dumped; it is executed by a carriage return. The second line is in response to the
question mark (?) prompt by the Dump Memory command. This line contains the memory
bounds of the object to be dumped: the start and stop address of the object, both addresses
should be even values. Both lines are completed by carriage returns, and delimiters between
fields can be commas or spaces. Addresses must be hexadecimal without the greater-than
sign (>).

DM {{\}«:DEVNO> <(CR)>

? <start address> {A} <stop address> <(CR)>

EXAMPLE
.DM 2 Both lines completed
71000,14FE with carriage returns

: Dump to cassette 1 the object program contained in memory addresses
100016 to 14FE16

81

9.1

9.2

9.3

9.4

95

SECTION 9
SETTING BAUD RATE AT SECOND EIA PORT

GENERAL

There are two kinds of CPU boards (TM 990/100M and TM 990/101M) that can be used in the
TM 990/302 system. One major difference between these two CPU boards is that two EIA
connectors are provided on the TM 990/101M while only one EIA connector is provided on the
TM 990/100M board. If the TM 990/101M board is used, the set rate (SR) command is needed
to set up the proper baud rate for the second EIA port (port P3, the middle port on the outside
edge when inserted in the card cage). In order to use this port, the user must specify the port
baud rate using the SR (set rate) command.

CONSIDERATIONS

On the second EIA port, the data format is fixed for one start bit, two stop bits, even parity, and
seven data bits. The only thing the user needs to set up is the baud rate. The available baud
rates are: 110, 300, 1200, 2400, 4800, 9600, and 19,200 Hz.

FORMAT

.SR <(CR)
? <BAUD RATE> <(CR)>

EXAMPLES

(1) .SR
719200 Set to 19.2K baud

(2) .SR
71200 Set to 1200 baud

ERROR CODE

If a nonsupported rate is specified in the SR command, the following message is output:

**ERROR 91

To recover, re-execute the SR command with one of the baud rates specified in paragraph 9.2.

9-1

10.1

10.2

103

SECTION 10
USER UTILITY CALLS

GENERAL

There are several user callable utilities in the TM 990/302 system software. These utilities can
provide very important assistance to the user in debugging and be of use when coding an
exercise program. The entries to these utilities are through BLWP instructions. A table of
BLWP vectors is located in lower system software ROM. The utilities use their own
workspaces.

CONSIDERATIONS

Since the entry of the utilities require BLWP vectors, any attempt to get into the utilities with
other than the required BLWP instruction will cause an unknown result. These utilities are
located at memory addresses 801 through 3FF1g; thus these locations are reserved.

UTILITIES

10.3.1 TM 990/302 RETURN TO SYSTEM SOFTWARE

This is not a utility as much as it is an entry point to the TM 990/302 system software. It
provides a convenient way of returning from user’s program to TM 990/302 system program.

Calling sequence:

BLWP @>E000

10.3.2 DECIMAL ASCII TO BINARY CONVERSION

This routine converts the signed decimal ASCIl number to a binary value in two's complement
form. The conversion range is from —32768 to +32767. The conversion stops when a
character other than a decimal ASCIl character (hexadecimal 30 to 39 following the sign
character) is detected in the number string. Before it is called, register R1 should contain the
ASClI-number buffer address. After completion, register RO contains the binary result and R1
points to one byte after the last ASCII digit.

Calling sequence:

BLWP @>E004
Example:
LI R1,BUFF R1 ponts to the ASCII buffer
BLWP @=>E004 Do a conversion
MOV RO,R10 Put result into R10
BUFF TEXT ‘—12366' Decimal ASCII character string
BYTE 0 Terminate string with a non-decimal ASCII

101

10.3.3 HEXADECIMAL ASCII TO BINARY CONVERSION

This routine converts a hexadecimal number to a binary value. The conversion range is from 0
to FFFF16. The conversion stops when a character other than a hexadecimal ASCII character
(hexadecimal 30 to 39 and 41 to 46) is detected in the number string. Before it is called, register
R1 should contain the buffer address of the hex ASCIl number. After it is returned, RO contains
the binary result and R1 points to one byte after the last ASCII digit.

Calling sequence:

BLWP @>E008
Example:
LI R1,BUFF R1 points to ASCI| buffer
BLWP @>E008 Do a conversion
MoV RO,R10 Put result into R10
BUFF TEXT “1BA’ Hexadecimal ASCII character string
BYTE 0 Terminate string with a non-hexadecimal ASCI|

10.3.4 BINARY TO DECIMAL ASCIl CONVERSION

This routine converts a binary value in two’s complement form to a signed decimal ASCII
number. The ASCII result is terminated with a ‘space’ (hexadecimal 20). Before it’s called, RO
should contain the binary value and R1 the ASCII buffer address. After it's returned R1 points
to one byte after last digit.

Calling sequence:

BLWP @=>E00C
Example:
MOV @NUM,RO Place binary number in RO
LI R1,BUFF R1 points to buffer
BLWP @=>E00C Do a conversion, decimal ASCIl in BUFF
NUM DATA 1234

10.3.5 BINARY TO HEXADECIMAL ASCIl CONVERSION
This routine converts a binary value to a hexadecimal ASCIl number. The ASCII result is
terminated with a ‘space’ (hexadecimal 20) which is the string delimiter for the print ASCII
routine. Before the conversion is called, RO should contain the binary number and R1 should
contain the hex ASCII buffer address. After it's returned, R1 points to one byte after the last
digit.
Calling sequence:

BLWP @=>E010

10-2

Example:

MOV @NUM,RO RO contains hex number

LI R1,BUFF R1 points to buffer

BLWP @=>EO010 Do a conversion, decimal ASCIl in BUFF
NUM DATA >FFBO

10.3.6 ECHO CHARACTER ON THE PRIMARY EIA PORT

This routine inputs a character from the EIA terminal and echoes it back to the primary EIA port
(port P2 on the microcomputer). The character is stored in the high order byte of RO.

Calling sequence:
BLWP @=>E014
10.3.7 OUTPUT A CHARACTER TO THE PRIMARY EIA PORT

This routine outputs an ASCII character which is stored in the high order byte of RO. The
character is output at EIA port P2 on the microcomputer board.

Calling sequence:

BLWP @>E018

Example:
LI R0,>3000 RO contains an ASCII0 in high order byte
BLWP @=>E018 Output it

10.3.8 OUTPUT A MESSAGE TO THE PRIMARY EIA PORT
This routine outputs a string of ASCII characters to the primary EIA port (port P2 on the
microcomputer). The output is terminated by a byte of zeroes (null character). Before
execution, RO must contain the address of the message.

Calling sequence:

BLWP @=>E01C
Example:
LI RO,MSSG Address of message in RO
BLWP @=>E01C
MSSG TEXT ‘IT SURE IS EASY TO USE’ Message
BYTEO Null delimiter

10-3

10.3.9 INPUT UP TO 80 CHARACTERS FROM PRIMARY EIA PORT
This routine inputs up to 80 characters from the P2 port of the TM 990/10X microcomputer.
The character string ends with a carriage return. Characters are stored beginning at M.A.
01101e.
Calling sequence:

BLWP @=>E020

10-4

SECTION 11
UPLINK BETWEEN TM 990/302 AND HOST COMPUTER

11.1 GENERAL

The TM 990/302 Uplink program allows the Software Development System to be used as an
ASR 733 emulator to communicate with a host computer such as the TI990/10 or T1990/4. This
feature allows the use of a more powerful computer when doing program development such
as text editing, assembly, link editing, etc. Then the object can be written directly to the
TM 990/302 for final debugging in the test bed environment in which the program will
operate. Object program transfer is through a host computer utility such as copy/concatenate.
The Uplink program operates in two basic modes:

TM 990/506 CABLE:
CONNECTOR P1 TO P3 OF TM 990/101M MICROCOMPUTER
CONNECTOR P3 TO HOST COMPUTER EIA BOARD

HOST
TERMINAL

T™M 990/101M
BOARD

TM 990/302
BOARD

COMPUTER

Figure 11-1. System Configuration For Uplink Program

1.2

11.21

1122

11.23

11.24

11.25

11.26

e Terminal Mode in which the host computer is accessed and controlled through the
Software Development System keyboard (paragraph 11.4).

® Load Mode in which the TM 990/302 acts as a passive 733 ASR terminal, accessed
(such as for storage on a cassette) through the keyboard of the host computer
(paragraph 11.5).

SYSTEM CONFIGURATION AND EXECUTION CONSIDERATIONS

Figure 11-1 shows the system configuration. The TM 990/302 and TM 990/101M boards are
interconnected through the card cage backplane. The host computer’s EIA interface board is
connected to the secondary EIA port on the TM 990/101M via the TM 990/506 cable (this
secondary microcomputer port is necessary for system operation with the Uplink program).
Note that only the TM 990/101M microcomputer can be used.

TM 990/506 CABLE

The TM 990/506 cable should be hooked up with cable connector P1 connected to connector
P3 of the TM 990/101M microcomputer, and with cable connector P3 connected to the 25-pin
EIA port on the host computer. This cabling is a reverse of the configuration in the TM 990/506
User’s Guide for modem use.

HOST COMPUTER EIA CARD

The EIA card in the host computer must be configured to communicate at the same baud rate
or lower than the console interface on the TM 990/302. The EIA card should be jumpered for 10
bits, both send and receive.

TM 990/101M BAUD RATE

The second EIA port on the TM 990/101M (P3 attached to cable TM 990/506) must be initialized
to the desired baud rate with the SR command (Section 9). The uplink will not work above 2400
baud.

HOST COMPUTER SOFTWARE

When transferring object code to the TM 990/302 from the host computer, the rewind inhibit
option (RO for TXDS operating systems) for output to digital cassette should be used to avoid
control code problems.

RETURN TO PROGRAM CALL

To return to the program call mode (defined in paragraph 11.3), press the CONTROL D
character at the TM 990/302 console. This is the D key pressed while the CONTROL key is
pressed. When executed, the question mark prompt asks for input of load parameters shown
in the example in paragraph 11.3.

RETURN TO MONITOR

To return to the Software Development System monitor press the CONTROL C character at the
TM 990/302 console. This is the C key pressed while the CONTROL key is pressed. When
control is passed to the monitor, the host computer and the TM 990/302 are no longer
communicating with each other.

11.3 UPLINK PROGRAM CALL

14

When the UL command is entered at the TM 990/302 console, the command mode is entered
and a question mark (?) prompt is issued asking for entry of load parameters, the same as
required by the Relocating Loader (Section 5).

Format:

UL = complete with carriage return

?<load address> <,> <|oad bias> <,> <load length> <,> <start address> <(CR)>
Py = [e e e—,

L—address within the program to start load

number of bytes to load (maximum)

L—— bias to be added to relocatable code

beginning address where to store program on TM 990/302 board

The second-line parameters are the same as for the Relocating Loader program, explained in
paragraph 5.1.

When the second line parameters are concluded with a carriage return, the TM 990/302 goes
into the Terminal Mode (paragraph 11.4).

Example:
.SR set baud rate with
71200 SR command (Section 9)
.UL
71000,0,600,0 = loading parameters
NOTE
Control may revert back to the program call by
entering a CONTROL D (EOT, press the D key
while CONTROL key is pressed); the question
mark prompt will appear asking for insertion of
new load parameters.
TERMINAL MODE

In the Terminal Mode, system control is maintained at the Software Development Board
console attached to the TM 990/101M board. In this configuration, the TM 990/302 should

appear like a 733 ASR in that all data sent to the host computer will be echoed back to the
TM 990/302 and printed on the terminal connected to the TM 990/101M. In effect, the
TM 990/302 becomes transparent to the terminal/host communications. All functions at the
host computer (assemblies, file manipulations, etc.) can be done at the 733 ASR through the
TM 990/302. All entries would be the same as if they were entered at the host terminal.

Figure 11-2 and 11-3 are examples of executing the copy/concatenate program on the
T1 990/10 and T1990/4 host computers respectively. Both load the same object program to the
TM 990/302.

Host Terminal 302

302

SR

= Set baud rate
£ |z1z2D0
% AL - Call Uplink
7950350, F000. 10 - —
ZYETEM COMMAMD IMTERFREETER - FLEAZE LDG IH l—I.oaldp.'elrameters
LIZER ID: REEEER
FRZZCODE: BENEBER
Bl ‘EE :
COFY<COMCATEMATE 990/10 operating
IHFUT RCCESS MAMECId: . MAIM4DEJ > zg%;itmchfggiiih
OUTFUT ACCEEE HHAME: CE03 El A ort P
FEFLACET: HO P
SHMASIMUM RECORD LEHGTH:
COFY COMFPLETED
L,_U - l 2 CONTROL C pressed at 302
ol) terminal
c |._|iruji|‘|:::rn Call Debugger
E*Fﬁél&lilﬁ_l s at TM 990/302
ﬁ Z=N00n
TE®

Figure 11-2. Uplink Program Execution, Tl 990/10 As Host Computer

11-4

302
Terminal

302
Terminal

Host Terminal

g 1

Tienn

A A

- 1L

FIO00« N1 N00s N -

(THa50 TYTTEM

FEOGRSM:
IHFLIT:

TEC

FELEREE 2.c=
MEMORY ZIZE(WORDEY : 24575 AVYRILABLE: 1624]
1.
THIID 2IE21S R 1~ 0 nie

OUTFRUT: C=1q

AFTIONZ: RO

THCDAT Q37547 ++

THEDE [RR21S +F 12550 nne:na
\ FROGFRAM: -*—
(.DP

1R

W=

A

F=EnzA
~=d 0D

1000

Set baud
rate

— Call Uplink

Set load parameters
Boot TX990 at host computer

No OCP, execute TX990

Execute object copy
through EIA port

CONTROL C at 302 terminal
to revert to

TM 990/302 monitor,
call Debugger

NOTE: Both host and TM 990/302 can use the same terminal.

Figure 11-3. Uplink Program Execution Using TX990 on Host Computer

115

LOAD MODE

In this mode, the Uplink program executes as if the TM 990/302 is a 733 ASR with digital
cassettes. The Uplink program is called as shown in paragraph 11.3, then control is main-
tained through the host computer console. If a transfer is initiated from the host computer to
one of the cassette drives of the TM 990/302 EIA port, the TM 990/302 will collect one line of

tagged object code, then use the Relocating Loader to place the object code into the memory
of the TM 990/302.

Figure 11-4 is an example of loading object down from the T1 990/4 host computer to the TM
990/302. Note in this program that if the RO option is not used, the object code will be printed

on the TM 990/302 console. When using the operating system on the Tl 990/10 computer, the
RO option is not necessary.

At TM 990/302 Console:

s

1200

7 11158
FLO00« N 1000 1

At TI 990/4 Console:

FROGRAM: :THCCAT EYE
IMPLIT: DRECE2IMBINg-EYE

OUTFUT: %1

dFTIONZ: PO

THETIE Q36215 +A/ 1+ N e 02

FROGREAM:

Figure 11-4. Transferring Object In The Load Mode On T1 9904

After the TM 990/302 Uplink has received the specified amount of data, it will return to the
monitor as shown in Figure 11-4 with the period (.) prompt. The host computer will return to its
monitor or utility menu. After the object code has been down loaded to the TM 990/302 board,
the object can be debugged using the Program Debugger (explained in Section 6)

A-2

APPENDIX A

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/10XM

GENERAL

Figure A-1 shows the wiring configuration required to connect a 3320/5JE Teletype in
a 20 mA current loop with a TM 990/10XM. Other teletypewriter models may require
different connections; therefore, consult the manufacturer for correct wiring of other
models. Teletypewriters can be used with Assembly No. 999211-0001 only.

CAUTION

Note the 117 Vac connection at pins 1 and 2. Be sure that this
voltage is not accidently wired to the TM 990/10XM board.

CONNECTIONS

The following assumes that the teletypewriter is wired as it came from the factory.

(1)

(2)

(3)

(4)

(5)

(6)

Locate the 151411 terminal block at the left rear (viewed from the rear) of the
machine (Figure A-1).

Move the white/blue wire from terminal 4 to terminal 5 on the terminal
block.

Move the brown/yellow wire from terminal 3 to terminal 5 on the terminal
block.

Move the purple wire from terminal 8 to terminal 9 on the terminal block (for
20 mA neutral signaling).

Locate the power resistor behind the teletype power supply. Remove the
blue wire from the 750 ohm tap and connect it to the 1450 ohm tap, as shown
in Figure A-2.

Check pins 3, 4, 6, and 7 at terminal strip 151411. Voltage to ground must be
zero with power applied. If not, do not connect to the TM 990/10XM.

NOTE

For teletypewriter operation jumper J11 must be installed and
J7 must be in the EIA position.

A-1

A-3 TROUBLESHOOTING

If the printer continues to chatter after the RESET switch on the TM 990/10XM has
been activated, reverse connections 6 and 7 at the terminal strip.

™™ 990/10XM
P2 @\
OUTPULL
25
PRINTER T
- | 24
INPUL L
18
v
KEYBOARD INPUSH e

TELETYPE MODEL 3320/5JE

TERMINAL
STRIP
151411

)

VIOLETIPURPLE)
i e

. YELLOW

BLACK/GREEN

WHITE/BROWN

-

| —

| RED/GREEN

WHITE/YELLOW
| oo

L WHITE/BLACK

e

1
T IRE

WHITE/BLUE

~. BROWN/YELLOW

GREEN/ORANGE

L RED

GRAYI(SILVER)

(1 2 34 86 7 8 9
| [oeeo o000 |
=

o\

\

LEFT REAR VIEW OF TELETYPEWRITER

DETAIL A

AN

Fal

'...l-‘"
L WHITE/RED

1

117 VAC

@

117 VAC

*NO.6 SPACE LUGS

Figure A-1. Teletypewriter Terminal Strip Connections

A-2

DETAIL A

Figure A-2. Teletypewriter Resistor Connection

A-3

APPENDIX B

EIA RS-232-C CABLING

Figure B-1 shows the wiring for the 743 KSR cable attached between connector P2 on the
TM 90/10XM and a 743 KSR data terminal. Also shown is the relationship between cable
wires and signals to the serial interface, the TMS 9902. Figure B-2 shows the cable con-

figuration for the 733 data terminal.

NOTE

When using an RS-232-C device, disconnect jumper J11 and
insert jumper J7 in the EIA position.

TMS 9902

RIN
xouT
ATS

CcTs

P2

EIA CABLE

A

TM 990/10XM
PROTECTIVE GND
3 RECEIVED DATA
2 TRANSMITTED DATA
5 DCD
6 T DTR
7 SIGNAL GND

TRANSMIT DATA

P1

RECEIVE DATA

| 13

REQUEST TO SEND

i 12

SIGNAL GND

NOTE: Suggested EIA cable connectors (ITT Cannon or TRW Cinch)
P2: DB 25P

P1:

DE 158

Figure B-1. EIA RS-232-C Cabling For 743 Data Terminal

B-1

e

743 DATA
TERAMINAL

TMS 9902

RIN
XouT

TM 290/10XM

EIA CABLE

P2
PROTECTIVE GROUND 1 PROTECTIVE GROUND
RECEIVED DATA 2 TRANSMIT DATA
TRANSMITTED DATA 3 RECEIVE DATA
+1 3.3K, uW 5 CTS
i ;% b 6 DSR
SIGNAL GND 3 SIGNAL GND
DCP 8 REQUEST TO SEND
DTR 20 DATA TERMINAL READY

Figure B-2. EIA RS-232-C Cabling For 733 Data Terminal

B-2

W N WN -

733
DATA
TERMINAL

APPENDIX C

ASCII CODE

TABLE C-1. *ASCIl CONTROL CODES

BINARY HEXADECIMAL
CONInG CODE CODE
NUL — Null 000 0000 00
SOH - Start of heading 000 0001 01
STX - Start of text 000 0010 02
ETX — End of text 000 0011 03
EOT - End of transmission 000 0100 04
ENQ - Enquiry 000 0101 05
ACK — Acknowledge 000 0110 06
BEL — Bell 000 0111 07
BS — Backspace 000 1000 08
HT — Horizontal tabulation 000 1001 09
LF — Line feed 000 1010 0A
VT - Vertical tab 000 1011 0B
FF — Form feed 000 1100 oc
CR — Carriage return 000 1101 oD
SO - Shift out 000 1110 OE
Si — Shift in 000 1111 OF
DLE - Data link escape 001 0000 10
DC1 - Device control 1 001 0001 1
DC2 - Device control 2 001 0010 12
DC3 -~ Device control 3 001 0011 13
DC4 — Device control 4 (stop) 001 0100 14
NAK — Negative acknowledge 001 0101 15
SYN — Synchronous idle 001 0110 16
ETB - End of transmission block 001 0111 17
CAN — Cancel 001 1000 18
EM - End of medium 001 1001 19
SUB - Substitute 001 1010 1A
ESC - Escape 001 1011 1B
FS — File separator 001 1100 1C
GS - Group separator 001 1101 1D
RS - Record separator 001 1110 1E
US - Unit separator 001 1111 HE
DEL - Delete, rubout 111 111 7F

*Amernican Standards Institute Publication X3 4-1968

C1

TABLE C-2. "ASCIl CHARACTER CODE

HEXADECIMAL

*American Standards Institute Publication X3.4-1968

C-2

BINARY HEXADECIMAL BINARY
CHARACTER CobE cobE CHARACTER COOE cobE
Space 010 0000 20 P 101 0000 50
I 010 0001 21 Q 101 0001 51
** {dbl. quote) 010 0010 22 R 101 0010 52
= 010 0011 23 s 101 0011 53
s 010 0100 24 T 101 0100 54
% 010 0101 25] 101 0101 55
& 010 0110 26 v 101 0110 56
‘ (sgl. quote) 010 0111 27 w 101 0111 57
{ 010 1000 28 X 101 1000 58
) 010 1001 29 Y 101 1001 59
* (asterisk) 010 1010 2A y 4 101 1010 5A
+ 010 1011 2B [101 1011 5B
, (comma) 010 1100 2c A 101 1100 5C
~ (minus) 010 1101 2D] 101 1101 5D
. (period) 010 1110 2E A 101 1110 5E
/ 010 1111 2F _ (underline) 101 1111 5F
0 011 0000 30 110 0000 60
1 011 0001 31 a 110 0001 61
2 011 0010 32 b 110 0010 62
3 011 0011 33 c 110 0011 63
4 011 0100 34 d 110 0100 64
5 011 0101 35 e 110 0101 65
6 011 0110 36 f 110 0110 66
7 011 0111 37 g 110 0111 67
8 011 1000 38 h 110 1000 68
9 011 1001 39 i 110 1001 69
011 1010 3A i 110 1010 6A
: 011 1011 3B k 110 1011 68
< 011 1100 3C I 110 1100 6C
011 1101 3D m 110 1101 6D
> 011 1110 3E n 110 1110 6F
? 011 1M 3F) 110 1111 6F
@ 100 0000 40 p 111 0000 70
A 100 0001 41 aQ 111 0001 71
B 100 0010 42 r 111 0010 72
o 100 0011 43 s 111 0011 73
D 100 0100 a4 t 111 0100 74
E 100 0101 a5 u 111 0101 75
F 100 0110 a6 v 111 0110 76
G 100 0111 a7 w 111 0111 77
H 100 1000 48 x 111 1000 78
1 100 1001 49 y 111 1001 79
J 100 1010 4A z 111 1910 7A
K 100 1011 4B { 111 1011 78
L 100 1100 4C : 111 1100 7c
M 100 1101 ap } 111 1101 7D
N 100 1110 4E ~ 111 1110 7E
0 100 1111 4aF

A-1

D-2

D-2.1

APPENDIX D

BINARY, DECIMAL AND HEXADECIMAL NUMBERING

GENERAL
This appendix covers numbering systems to three bases (2, 10, and 16) which are used
throughout this manual.

POSITIVE NUMBERS

Decimal (Base 10).
When a numerical quantity is viewed from right to left, the right-most digit represents
the base number to the exponent 0. The next digit represents the base number to the
exponent 1, the next to the exponent 2, then exponent 3, etc. For example, using the
base 10 (decimal):

106 105 104 103 102 101 100
X % X ¥ X-X X

or

1,000,000
100,000

10,000
y 1000 100 10 1
X, XXX, X X X

For example, 75,264 can be broken down as follows:

75, 264

-[—4X100=4><1 - 4

6x101=6x10 - 60
L 2x102=2%x100 = 200
5% 103=5x 1000 = 5000

7 x 104=7x 10,000= +70,000
7526410

D-1

D-2.2 Binary (Base 2).

D-2.3

As base 10 numbers use ten digits, base 2 numbers use only 0 and 1. When viewed
from right to left, they each represent the number 2 to the powers 0, 1, 2, etc,,
respectively as shown below:

215 26 9hi i ad S adi 928 20

(32,768) eee® (64) (32) (16) (8) (4) (2) (1)
X eeoe X X X X X X X

For example, 110112 can be translated into base 10 as follows:
N e S

| LT 1x20=1%x1 =1
1x21=1%x2 =2
0x22=0x4 =0

1x28=1%8 =8
1x24=1x16=+16

2710
or 110112 equals 2710.

Binary is the language of the digital computer. For example, to place the decimal
quantity 23 2310) into a 16-bit memory cell, set the bits to the following:

0 15

ojo(ofojo|Oof{O0|O|O|O|O[T(OfT1 |11

whichis1+ 2+ 4 + 16 = 2310.

HEXADECIMAL (Base 16). Whereas binary uses tow digits and decimal uses ten digits,
hexadecimal uses 16 (0t0 9, A, B, C, D, E, and F).

The letters A through F are used to represent the decimal nunbers 10 through 15 as
shown on the following page.

N10 N16 N10 N16
0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 c
5 5 13 D
6 6 14 £
7 7 15 F

D-2

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16
to the powers 0, 1, 2, 3, etc., as shown below:

163 162 161 160

(4096) (256) (16) (1)
X X X X

For example, 7 B A 516 can be translated into base 10 as follows:

T -B A8
‘ -I——10x160=5><1 = 5
10x161=10x16 = 160
11X 162=11x 256 = 2,816
7-163=7x409 = 28,672

31,65310
or 7B A 516 equals 31,65310.

Because it would be awkward to write out 16-digit binary numbers to show the
contents of a 16-bit memory word, hexadecimal is used instead. Thus

003E16 or > 003E (> indicates hexadecimal)

is used instead of
0000 0000 0011 11102

to represent 6210 as computed below:
BASE 2

Jl5 Qo AP0

‘ —I;1x21 = 0
1x21 = 2
1% 22 = 4

1x23 = 8

1x24 = 16

1x25 = 32

6210

D-3

BASE 10

6 210

I
N

2 x 100
6x101 = 60

6210

BASE 16
3 E1e6

’ L14x160 = 14
3x161 = 48

6210

Note that the 16 binary bits into four-bit parts facilitates recognition and translation
into hexadecimal.

0000 0000 0011 11102/ c 5 B
or |

0 0 3 E16 1100 0111 1011 11112

F16

Table D-1 is a conversion chart for converting decimal to hexadecimal and vice versa.
Table D-2 shows binary, decimal and hexadecimal equivalents for numbers 0 to 15.
Note that Table D-1 is divided into four parts, each part representing four of the 16-bits
of a memory cell or word (bits) 0 to 15 with bit 0 being the most significant bit (MSB)
and bit 15 being the least significant bit (LSB). Note that the MSB is on the left and
represents the highest power of 2 and the LSB on the right represents the 0 power of 2
(20 = 1). As explained later, the MSB can also be used to signify number polarity (+ or
=),

NOTE

To convert a binary number to decimal or hexadecimal, convert
the positive binary value as described in Section D-4.

D-4

TABLE D-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB
163 162 161 160
Brs| 0 1 2 3| 45 6 7 |8 7 8 11 12 13 14 15
HEX DEC | HEX DEC | HEX DEC | HEX DEC
0 ol o ol o of o 0
1 4096 | 1 256 | 1 16| 1 1
2 8192| 2 512 | 2 32| 2 2
3 12288| 3 768 | 3 48| 3 3
4 16384| 4 1024 | 4 64| 4 4
5 20480 5 1280 | 5 80| 5 5
6 24576| 6 1536 | 6 %6 | 6 6
7 286712| 7 1792 | 7 e T 3
8 32768| 8 2048 | 8 128| 8 8
9 36864| 9 2304 | 9 144 | 9 9
A 40960| A 2560| A 160 | A 10
B 45056| B 2816 | B 176 | B 1
C 49152| C 3072| C 192 | C 12
D 53248 D 3328| D 208| D 13
E 57344| E 3584 | E 224 | E 14
F 61440| F 3840 | F 240 | F 15

To convert a number from hexadecimal, add the decimal equivalents for
each hexadecimal digit. For example, 7A821¢ would equal in decimal 28,672
+ 2,560 + 128 + 2. to convert hexadecimal to decimal, find the nearest
decimal number in the above table less than or equal to the number being
converted. Set down the hexadecimal equivalent then subtract this number
from the nearest decimal number. Using the remainder(s), repeat this
process. For example:

31,36210 = 700016 + 269010 7000
2,69010 = A0016 + 13010 A00
13010 = 8016 + 210 80
210= 216 2

7A8216

D-5

TABLE D-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS

BINARY DECIMAL HEXADECIMAL
(N2) (N10) (N16)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 1 B
1100 12 €
1101 13 D
1110 14 3
1111 15 F
10000 16 10
10001 17 1
10010 18 12
10011 19 13
10100 20 14
10101 21 15
10110 22 16
10111 23 17
11000 24 18
11001 25 19
11010 26 1A
11011 27 1B
11100 28 1C
11101 29 1D
11110 30 1E
11111 31 1F

100000 32 20

D-6

D-3 ADDING AND SUBTRACTING BINARY

D-4

Adding and subtracting inbinary uses the same conventions for decimal; carrying
over in addition and borrowing in subtraction.

Basically,

10 (the carry, 1, is carried to the left) 01 (1 is borrowed from
top left)

1
} =0 + carry.1 o
1 1
u = 0 (from above) + 1 = 1 + 1
T ' 101
carry carry 1 + 1 = 10
- 1
1 1000 0110
} =0 + 1 carry
! — 1, Borrowthel 1§ —1

1 0111 0111
1 } 0 + 1 carry

T)
carry 1 + carry 1

+4

-y
o

POSITIVE/NEGATIVE CONVERSION (Binary)..

To compute the negative equivalent of a positive binary or hexadecimal number, or
interpret a binary or hexadecimal negative number (determine its positive equivalent)
use the two's complement of the binary number.

NOTE
To convert a binary number to decimal, convert the positive
binary value (not the negative binary value) and add the sign.

D-7

Two's complementing a binary number includes two simple steps:

a. Obtain one’s complement of the number (1’s become 0's, 0's becomes 1's)

(invert bits).

b. Add 1to the one’s complement.

For example, with the MSB (left-most bit) being a sign bit:

010 (+29) 111 (=19) 110
101 Invert 000 Invert 001
+1 Add 1 +1 Add 1 * 1
110 (-29) 001 (+19) 010

This can be expanded to 16-bit positive numbers:

(=39F675) 001T 1001 1111 0110
1100 0110 0000 1001
+1
(=C60A1g) 1100 0110 0000 1010
SIGN BIT(—)
And to 16-bit negative numbers:
(=C60Aqg) 1100 0110 0000 1010
0011 1001 1111 0101
+1
(=39F61g) 0011 1001 1111 0110
SIGN BIT(+)

(—29) 101 (=39)

Invert 010 Invert

Add 1 ookl

{+22} 011 {+32)

{39F616 = +14,33310)

Invert

Add 1

(C60A1g = —14,83819) Two’s Complement
{C50A15 = —14,8384p)

Invert

Add 1

(39F61g = +14,8381g) Two’'s Complement

D-8

APPENDIX E

ERROR CODES

E-1 SYMBOLIC ASSEMBLER ERROR CODES

Error
No.

Explanation

1

10

11

Invalid Symbol: Symbols must be alphanumerical with the first character alpha-
betical. Use correct format.

Multiply Defined Symbol: Symbol is used to define location of a previous source
line. Use other symbol.

Symbol Table Overflow: Symbol table cannot accept any further entries. Restrict
quantity of symbols to amount shown in Table 4-1.

Mnemonic Size Too Large. Op-code mnemonic is more than four characters.
Undefined Mnemonic: Op-code mnemonic is not one of the valid TM 990
mnemonics not a defined XOP mnemonic. Valid TM 990 mnemonics are listed in
Appendix H.

lllegal Register Number: Register number is greater than 15.

CRU Instruction Displacement: Displacemeht of TB, SBZ, or SBO) instruction is
greater than 256 (plus or minus).

Jump Instruction Displacement: Displacement of jump instruction is greater than
256 (plus or minus).

Invalid Shift Count: Shift count must be from zero to 15.

Non-increasing Location Counter: Memory address in AORG assembler directive
is a smaller value than current value of location counter. This will occur when
second AORG value is less than the value in a prior AORG directive. Location

Counter contents must be in ascending order.

Byte Value Too Large: Operand of BYTE assembler directive is a value larger
than 256.

E-1

12 No Start of Text: Character string following a TEXT assembler directive did not
start with a single quote. Such character strings are delimited with single quotes.
A single quote within a TEXT directive is specified by two single quotes.

13 IDT Length Error: Character string of IDT assembler directive (at beginning of
program) has character string of more than eight characters.

14 Invalid IDT: Character string of IDT assembler directive did not begin with a single
quote.

15 lllegal Text Statement: Text statement contained character that cannot be
interpreted.

16 lllegal XOP Number: XOP number above 15 specified. XOP numbers are from 0
10'15.

17 Undefined Symbol: Symbol was used in an instruction which had not been
defined in the symbol field of the source statement.

18 Input 1/0 Error: Error in reading source from cassette; probably a checksum
error or improper casette connection.

19 No END Directive: Must have an END directive as last statement in program
(see paragraph F.2.7 in Appendix F). Use Text Editor to input this statement.

20 lllegal Mathematical Expression. Delete expression (explained in paragraph 4.7).

E-2 TEXT EDITOR ERROR CODES
Error
No. Explanation
21 Commands: G, K, Q

Meaning: Error in transmission of source statements from cassette to memory
buffer, could be a checksum error or error in data communications format.

Recovery Procedure: The program segment with the error is lost and will not be
written to cassette with a Keep or Quit command. A Quit command will write the
remaining program segments to the output cassette; then, the truncated program
can be read in again and the lost source records re-entered. Or, after the Quit
command, read in the original source cassette (with error) to see if the error
reoccurs (any editing in the first session will not be on this cassette). Or, the
program segment can be considered lost and the user can continue editing the
remaining source segments, finishing the session with a Quit command, without
the program segment in error.

E-2

22

23

24

25

26

27

Command: G

Meaning: There is a source line in the memory buffer with a line number larger
than the first line number of a segment brought in from cassette. Incoming
source lines should be ascendingly greater than line numbers in the buffer.

Recovery Procedure: Further input of a program segment is prohibited (i.e., Get
command is prohibited). Commands other than Get can be executed; however,
editing out of the line(s) causing this error will not permit Get command to
execute. A Quit command causes a return to the monitor without reading in
remaining program segments from input cassette. User can re-edit original
source on the input cassette or edit the truncated source on the output cassette.

Command: G
Meaning: Get command cannot be performed because end-of-file (EOF) has been
detected; thus complete program file has been read.

Recovery Procedure: Execute Quit command to write memory buffer contents to
cassette.

Command: G
Meaning: Insufficient space in memory buffer to receive new source records.

Recovery Procedure: Execute Keep command to write buffer contents to cassette.
Re-execute Get command.

Command: All
Meaning: Text Editor command input is not valid.

Recovery Procedure: Insert valid Text Editor command.

Command: K, R

Meaning: Resequencing of line numbers requested after Keep command
executed. Entire program through EOF marker must have the same line sequence
numbering.

Recovery Procedures:

(1) Continue using present sequencing value

(2) or execute Quit command, reenter Text Editor, and specify new resequencing
value before first Keep command. Last Resequence command will

apply.

Command: P
Meaning: In Print command, ‘irst (beginning) line number to be printed was
larger than second (ending) line number.

28

29

30

31

32

Recovery Procedure: Reenter command with first line number smaller than
second line number.

Command: P, |
Meaning: Line number to be printed is too small; a line number of higher value
has been sent to the output cassette.

Recovery Procedure: Reenter command; use a source line number with a value
higher than the highest source line number in the output cassette.

Commands: Insertion or change commands
Meaning: Command issued to insert or change a line having a higher value
than the highest-numbered line in the memory buffer.

Recovery Procedure: If line to be inserted or changed has a higher number than
the highest line number memory buffer, use Get command to read in the program
segment containing line numbers in the range desired.

Command: Insertion Command
Meaning: Not enough memory buffer space for line to be inserted or line to
replace existing line.

Recovery Procedure: Decrease memory buffer contents using a Keep command
or the line deletion command. Then attempt the line insertion again. If insertion
command also causes a line to be deleted (replace existing line), then line to be
replaced was deleted but new line was not inserted in its place.

Command: R
Meaning: Starting line number in Resequence command was a value greater than
9000 (decimal).

Recovery Procedure: Re-execute Resequence Command with a starting-line less
than 9000.

Command: R

Meaning: Resequencing command executed and tried to generate a line number
greater than 9999 during a Keep or a Quit function. Maximum line number
allowed is 9999.

Recovery Procedure: When the line number reaches 9999, an end-of-file is written
to the cassette, and data following line 9999 is lost. Re-edit the source as
required and begin resequencing lines with a lower beginning number. The
resequencing command increments line numbers from 1 to 8999 by ten, and
increments line numbers from 9000 to 9999 by one.

E-4

E-3 RELOCATING LOADER ERROR CODES

Error
No.

Explanation

51

52

Meaning: An invalid load tag was found. The loader interprets several load tags
including 9 (absolute load address), A (relocatable load address), B (absolute
data), and C (relocatable data). Load tags used by the 990 family of computers
are explained in Appendix G.

Recovery: Rewind cassette and re-execute the load operation. If the error re-
occurs, reassemble the program to obtain a new object on cassette.

Meaning: Checksum error occurred. When the object code is formatted into object
records by the assembler, the last load tag field of each record is a checksum value
which is the two’s complement of the sum of all ASCII character values represent-
ing the object code; this includes all characters beginning with the first tag
character in the object record up to and including the “7” tag of the checksum
field. The loader makes a similar computation when loading the object and com-
pares the results to the checksum value. If the comparison is a match, the loaded
data is considered valid.

Recovery: Rewind cassette and re-execute the load operation. If the error
reoccurs, reassemble the program to obtain a new object on cassette.

E-4 BAUD RATE CHANGE ERROR CODE

Error
No. Explanation
91 Meaning: Baud rate specified is not one of the following: 110, 300, 1200, 2400,

4800, 9600, or 19200 Hertz.

Recovery: Specify one of the above baud rates.

E-5

F-1

F-2

F-2.1

APPENDIX F

ASSEMBLER DIRECTIVES

GENERAL

This appendix defines the following eleven assembler directives recognized by the
Symbolic Assembler (described in Section 4). Note that at least two of these must be
used in every program: the IDT and END directives. These directives and
corresponding paragraph number are:

® AORG Absolute origin of statement (absolute location) E2
® BSS Block of memory starting with symbol F.2.2
® BYTE Eight-bit immediate value F.2.3
® DATA Sixteen-bit immediate value F.2.4
® DREG Define registers as being preceded by an R F.2.5
® DXOP Define XOP opcode mriemonic F.2.6
® END End of source code F.2.7
e EQU Label equated to symbol or value F.2.8
® EVEN Location counter to even-numbered address F.2.9
e DT Identifying symbol for program F.2.10
® TEXT Code character string in ASCIl code F.2.11
DIRECTIVE FORMATS

Syntax used in this subsection (see paragraph 1.7):
< > Items enclosed in these must be supplied by the user
[] Items enclosed in these are optional
A Indicates at least one space
> Indicates hexadecimal quantity follows
AORG DIRECTIVE
Format:
[label] A <AORG> A <location> A [comment]

The AORG directive places a value in the location counter and defines the source
statement code as beginning at that location. The location value must be in decimal or

F-1

F22

F.23

hexadecimal. By default, the location counter for the assembler begins at 00001 and
is incremented by two for each word occupied by the instruction. The first AORG in a
program can be preceded only by an IDT directive. If successive AORG’s are used, the
AORG value must be higher than the current contents of the location counter. In the
case of more than one AORG, the length of the object module for the Relocating
Loader is computed as the difference between the lowest AORG value and the highest
address listed in the assembler listing plus two. The loading address is that of the first
AORG. When a label is used with the AORG directive, it is assigned the value that the
directive places in the location counter. Comment field is optional. Example:

AORG =>FCo00 Begin assembling source code at location
counter value of >FC00

BSS DIRECTIVE
Format:
[label] A <BSS> A <number of bytes> A [comment]

The BSS (block with starting symbol) directive advances the location counter (which
the assembler uses to count the bytes of machine code) a quantity of bytes as
specified in the directive. In essence, it “reserves” a block of bytes starting at the next
location counter value; this block will be void of object code when loaded later by the
Relocating Loader. Code assembler after this directive will be loaded following this
block when loaded by the loader. An optional label (in the label field) can be specified
to identify the first location in the block. The byte count must be in decimal or
hexadecimal.

BYTE DIRECTIVE

Format:
[label] A <BYTE> A <1-8 bit value,..., 1-8 bit value> A [comment]

This directive places one or more decimal or hexadecimal (8 bits maximum) values in
successive bytes. If the value specified is larger than 8 bits (one byte), an error
message is printed and the right-most eight bits are assembled into the byte. When a
label is used, it is assigned the location of the first byte in the directive. If more than
one byte is specified, successive bytes will be separated by commas. Successive
entries to this directive will be placed in consecutive byte locations. Specified bytes
will begin at even or odd addresses, depending upon preceding code.

F-2

F.24

F.25

Example:

BYTE 125,240,>FF,0,33

\——Successive bytes to be assembled with hexadecimal
values of each

DATA DIRECTIVE
Format:
[label] A <DATA> A <1-16 bit value,.., 1-16 bit value> A [comment]

This directive is similar to the BYTE directive (paragraph F.2.3) except that it places 16
bit values into (successive) memory locations. Data is placed in even address

locations.
Example:

DATA <FFFF,1764,>BB,0,444

_L— Assemble as 00BB,0000

DXOP DIRECTIVE
Format:
[label] A <DXOP> A <symbol,XOP no.> A [comment]

This directive allows the user to specify a one- to four-character mnemonic in place of
the XOP mnemonic and the XOP number used in an extended operation instruction.
This directive permits the use of a mnemonic to define the use of the particular XOP,
useful when this instruction is used repeatedly. The DXOP opcode and space are
followed by (1) the mnemonic to be used as the operand of the XOP instruction and (2)
the XOP number, both separated by a comma. The label field is optional, the label will
be assigned the current location counter value.

NOTE
The DXOP directive must be used in the pro-

gram prior to using the abbreviated format it
defines.

F-3

F.2.6

For example:
XOP @>FC00,14
can be simplified by specifying

DXOP ECHO,14

then using

ECHO @>FCo00
END DIRECTIVE
Format:

[label] A <END> A [entry point] A [comment]

This directive is a mandatory for each program. It designates to the assembler that this
is the final input from the source program. In essence, it informs the assembler that all
source lines have been read in and that the next phase of assembling should begin.
This is the last statement in the program, and any statements following it will be
ignored. When the optional label is used, it is assigned the current value in the location
counter. The optional operand field contains a symbol (absolute or relocatable)
specifying the entry point of the program. When the entry-point operand is used, the
entry point is specified in the object code so that the Program Counter will be set to this
value by the loader immediately after loading. The program can then be executed by
the EX command of the Program Debugger.

Example:

END START

location labelled START is entry point for
program

F-4

)

Format:

F.2.7 EQU DIRECTION

<label> A <EQU> A <expression> A [comment]

This directive assigns a value to a label for use during assembly. The operand field can
contain a symbol or expression which has been previously defined (e.g., any constant
such as a numerical value or a previously used symbol or expression of these). This
directive allows the user to substitute easily remembered mnemonics in program
source lines. The optional label will be assigned the current value in the location
counter. Mathmatical expressions (e.g., LABL + 5) cannot be used with this directive.

Examples:

(1)

SUM EQU 1
allows using SUM for register 1 such as

MOV @>FC00,SUM MOVE QTY TO R1
instead of
s MOV @>FC00,1 MOVE QTY TO R1
(2) INT EQU 9681
allows this constant value to be used in subsequent source lines
LI R1,INT PLACE CONSTANT IN R1
instead of remembering the constant value.
(3) IfINT has been previously defined as above, the following
MOV @INT+4,@INTA
will result in moving the value located four bytes beyond location INT into
location INT1.
F.2.8 EVEN DIRECTIVE
Format:
[label] A <EVEN> A [comment]

F-5

This directive is used to set the location counter at an even numbered value. Ifitis atan
even numbered value, no action is taken. If the location counter is at an odd value, the
quantity of one is added to it. This directive ensures that code will start at an even
address.

F.2.9 IDT DIRECTIVE
Format:
[label] A <IDT> A <‘character string’> A [comment]

This is a mandatory directive and should be the first statement in a program, pre-
ceding any source statements that will result in object code. The mnemonic is
followed by a space and a character string of one to eight alphanumeric characters in
single quotes. The optional label will be assigned the value of the location counter.

F.2.10 TEXT DIRECTIVE
Format:
[label] A <TEXT> A [-] <‘character string’> A [comment]

This directive, like the BYTE and DATA directives, is used to generate absolute data for
program use. BYTE and DATA statement operands are interpreted as numerical
values. The TEXT statement operand contains alphanumeric characters which are to
be interpreted into ASCIl code. Inputs in the operand field are enclosed in single
quotes. Ifitis desired to have the last character in the string negated (left-hand sign bit
set to one), place a minus sign before the character string. This latter feature can be
used to identify the final character in the string. The optional label field will be
assigned the value in the location counter; this value will identify the location of the
first character in the string.

Examples:
(1) CMNT TEXT ‘LOAD TAPE, HIT CR’
(2) CMNT TEXT —‘LOAD TAPE, HIT CR.’

Minus sign preceding text causes final character to be
negated (two's complement)

(the period, >2E, becomes > D2).

F-6

APPENDIX G
990 OBJECT CODE FORMAT
G.1 GENERAL

In order to correctly load a program into memory using a loader, the program in
hexadecimal machine code must be in a particular format called object format. Such a
format is required by the Relocating Loader (Section 5 explains loader execution). This
object format has a tag character for each 16-bit word of coding which flags the loader
to perform one of several operations. These operations include:

® Load the code at a user-specified absolute address and resolve relative
addresses. (Most assemblers assemble a program as if it was loaded at
memory address 00001g; thus relative addresses have to be resolved.)

® Load entire program at a specific address.

® Set the program counter to the entry address after loading.

® Check for checksum errors that would indicate a data error in an object
record.

NOTE

The TM 990/302 Symbolic Assembler does not provide
relocatable object code; thus the relocating feature of the first
operation example above is not required. The Symbolic
Assembler utilizes the following object tags only (further
described in Table G-1): 0,1,7,9, B, and F.

G.2 STANDARD 990 OBJECT CODE

Standard 990 object code consists of a string of hexadecimal digits, each representing

four bits, as shown in Figure G-1.
TAG CHARACTERS

[T T K e o

00000SAMPROG 90040 0AD0020BC0O6DB000 2C0020A0024BC81BCO02A7F21AF

A0028B024180000BCB41B0002B0380A00CAC0052C00A2B02E0C0032B0200BOFOF7F 1DEF

AO0D6BCOAOCO0CABO4C3BC160C0O0CCBC1AOC00DOBCO72B0281B3A00A00ECB02217F 151F

AOOEEBOS00BO6C1ADOEAB1102A00F2B0543B11F8B2C20C0032BC101B0OB44BED447F 18EF

A0100BDD66B0003B0282C00A2B11EDBO3407F 832F —/
CHECKSUM FIELD

200(‘.50010(3 7FCABF

\— LENGTH OF RELOCATABLE CODE

RELOCATABLE ENTRY ADDRESS (BEGINNING OF EXECUTABLE CODE)
END OF OBJECT CODE MARKER

Figure G-1. Object Code Example

G-1

The object record consists of a number of tag characters, each followed by one or two
fields as defined in Table G-1. The first character of a record is the first tag character,
which tells the loader which field or pair of fields follows the tag. The next tag
character follows the end of the field or pair of fields associated with the preceding tag
character. When the assembler has no more data for the record, the assembler writes
the tag character 7 followed by the checksum field, and the tag character F, which
requires no fields. The assembler then fills the rest of the record with blanks, and
begins a new record with the appropriate tag character.

Tag character 0 is followed by two fields. The first field contains the number of bytes of
relocatable code, the second field contains the program identifier assigned to the
program by an IDT assembler directive. When no IDT directive is entered, the field
contains blanks. The loader uses the program identifier to identify the program, and
the number of bytes of relocatable code to determine the load bias for the next module
or program. The PX9ASM assembler is unable to determine the value for the first field
until the entire module has been assembled, so PX9ASM places a tag character 0
followed by a zero field and the program identifier at the beginning of the object code
file. At the end of the file, PX9ASM places another tag character zero followed by the
number of bytes of relocatable code and eight blanks.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the
entry address is absolute. Tag character 2 is used when the entry address is re-
locatable. The hexadecimal field contains the entry address. One of these tags may
appear at the end of the object code file. The associated field is used by the loader to
determine the entry point at which execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references. Tag character 3 is used when
the last appearance of the symbol in the second field is in relocatable code. Tag
character 4 is used when the last appearance of the symbol is absolute code. The
hexadecimal field contains the location of the last appearance. The symbol in the
second field is the external reference. Both fields are used by the linking loader to
provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code,
with a location, or an absolute zero, and the symbol that is referenced. When the
object code field contains absolute zero, no location in the program requires the
address that corresponds to the reference (an IDT character string, for example).
Otherwise, the address corresponding to the reference will be placed in the location
specified in the object code by the linking loader. The location specified in the object
code similarly contains absolute zero or another location. When it contains absolute
zero, no further linking is required. When it contains a location, the address corres- -
ponding to the reference will be placed in that address by the linking loader. The
location of each appearance of a reference in a program contains either an absolute
zero or another location into which the linking loader will place the referenced
address.

G-2

TABLE G-1. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS

TAG HEXADECIMAL FIELD
CHARACTER (FOUR CHARACTERS) i i el
0 Length of all relo- 8-character program Program start
catable code identifier
1 Entry address None Absolute entry
address
2 Entry address None Relocatable entry
address
3 Location of last 6-character symbol External reference
appearance of last used in relo-
symbol catable code
4 Location of last 6-character symbol External reference
appearance of last used in absolute
symbol code
5 Location 6-character symbol Relocatable external
definition
6 Location 6-character symbol Absolute external
definition
7 Checksum for None Checksum
current record
é Ignore checksum None Do not checksum for
error
9 Load address None Absolute load
address
A Load address None Relocatable load
address
B Data None Absolute data
c Data None Relocatable data
D Load bias value* None Load point specifier
F None None End-of-record
G Location 6-character symbol Relocatable symbol
definition
H Location 6-character symbeol Absolute symbol

definition

"Not supphed by assembler

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when
the location is relocatable. Tag character 6 is used when the location is absolute. Both
fields are used by the linking loader to provide the desired linking to the external
definition. The second field contains the symbol of the external definition.

G-3

Tag character 7 precedes the checksum, which is an error detection word. The check-
sum is formed as the record is being written. It is the 2’s complement of the sum of the
8-bit ASCII values of the characters of the record from the first tag of the record
through the checksum tag 7. If the tag character 7 is replaced by an 8, the checksum
will be ignored. The 8 tag can be used when object code is changed in editing and it is
desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that follows. Tag
character 9 is used when the load address is absolute. Tag character A is used when
the load address is relocatable. The hexadecimal field contains the address at which
the following data word is to be loaded. A load address is required for a data word that
is to be placed in memory at some address other than the next address. The load
address is used by the loader.

Tag characters B and C are used with data words. Tag character B is used when the
data is absolute; an instruction word or a word that contains text characters or
absolute constants, for example. Tag character C is used for a word that contains a
relocatable address. The hexadecimal field contains the data word. The loader places
the word in memory location specified in the preceding load address field, or in the
memory location that follows the preceding data word.

To have object code loaded at a specific memory address, precede the object program
with the D tag followed by the desired memory address (e.g., DFD00).

Tag character F indicates the end of record. It may be followed by blanks.

Tag characters G and H are used when the symbol table option is specified with other
990 assemblers. Tag character G is used when the location or value of the symbol is
relocatable, and tag character H is used when the location or value of the symbol is
absolute. The first field contains the location or value of the symbol, and the second
field contains the symbol to which the location is assigned.

The last record of an object code file has a colon (:) in the first character position of the
record, followed by blanks. This record is referred to as an end-of-module separator
record.

Figure G-2 is an example of an assembler source listing and corresponding object

code. A comparison of the object tag characters and fields with the machine code in
the source listing will show how object code is constructed for use by the loader.

G-4

¥

SAMFLE

o=k}

a2

a3z
alsl- L}
[0S
ulalz
0097
0088
0909
0810

2911
ae12
BO413
2914
2013

0016
2817

PO1s

D919

==0% 1%
anz
R4
0eas
=2 el
e3A
0B8R
ee3ac
@esE
2aese
aR32
2634
28e9s
0998
8098
009A
883C
BOSE
BoRe
BRR2
ooRA4
BBR6
O[S

MO ERRORS

NNNARSAMFLE

SOURCE STATEMENT NO.

LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

MACHINE CODE

SDSMAC 945278 **

FPHGE Bl
IDT “SAMPLE”’
ARGE - DATA WSPACE
BasA - DRATAR START
aoaa DATA @
WSFACE BSS 32
TRBLE BSS 100
START
a4cC CLR 12
BP4CH CLR o
azez LI 2, TRBLE
09267 .
800 MOY O, @TABLE+2
Bazs”
1aal JMF $+4
LOOP
aaad LI 4, >1234
1234
nz244 ANDI 4, >FEED
FEED
DCa4q MOYB 4, %2+
az2e5 LI 35, 25555
b bk
cBns MoV 5, @TABLE
a28”
END
HOOOOCOO0eZ DNZAREODOOADOSAENICCEO4C OBV 0 nugnBCEONPFEN0F 1

CON28RL1OMIENEO4ELIE34E0S44 EFEEDEDC 24 B0 OSESSSSECS0S. 00ee 7F SC 1F
: SHMPLE

0000, 00

na:s14: 22

SDIMAC

FGS5278 ee

Figure G-2. Source Code And Corresponding Object Code

G-5

INSTRUCTION SET, ALPHABETICAL INDEX

APPENDIX H

INSTRUCTION SET

ASSEMBLY MACHINE STATUS REG. RESULT
LANGUAGE LANGUAGE BITS COMPARED
MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION
A AD00 1 o4 X Add (word)
AB BOOO 1 05 X Add (byte)
ABS 0740 6 0-2 X Absolute Value
Al 0220 8 0-4 X Add Immediate
ANDI 0240 8 0-2 X AND Immediate
B 0440] - Branch
BL 0680 6 - Branch and Link (R11)
BLWP 0400 6 - Branch; New Workspace Pointer
c 8000 1 02 Compare (word)
CcB 2000 1 025 Compare (byte)
Cl 0280 8 02 Compare Immediate
CKOF 03co 7 - User Defined
CKON 03A0 7 - User Defined
CLR 04Cco 6 - Clear Operand
coc 2000 3 2 Compare Ones Corresponding
CZc 2400 3 2 Compare Zeroes Corresponding
DCA 2C00 9 0-5,7 Correct BCD Addition (9940)
DCS 2Ca0 9 057 Correct BCD Subtraction (9940)
DEC 0600 6 0-4 X Decrement (by one)
DECT 0640 6 0-4 X Decrement (by two)
DIv 3C00 9 4 Divide
IDLE 0340 7 - Computer Idle
INC 0580 6 0-4 X Increment (by one)
INCT 05CO0 6 0-4 X Increment (by twal
INV 0540 6 02 X Invert (One's Complement)
JEQ 1300 2 - Jump Equal (ST2=1)
JGT 1500 2 - Jump Greater Than (ST1=1), Arithmetic
JH 1800 2 — Jump High (STO=1 and $T2=0), Logical
JHE 1400 2 Jump High or Equal (STO or $T2=1), Logical
JL 1A00 = - Jump Low (STO and ST2=0), Logical
JLE 1200 2 - Jump Low or Equal (STO=0 or §T2=1), Logical
JLT 1100 z - Jump Less Than (ST1 and ST2=0), Arithmetic
Jmp 1000 2 - Jump Unconditional
JNC 1700 2 - Jump No Carry (ST3=0)
JNE 1600 2 - Jump Not Equal (ST2=0)
JNO 1900 F - Jump No Overflow (ST4=0)
Joc 1800 2 - Jump On Carry (§T3=1)
A

INSTRUCTION SET, ALPHABETICAL INDEX (Concluded)

ASSEMBLY MACHINE STATUS REG. RESULT
LANGUAGE LANGUAGE BITS COMPARED
MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION
JOP 1C00 o) - Jump Odd Parity (ST5 1)
LDCR 3000 4 025 X Load CRU
Ll 0200 8 - X Load Immediate
LiM 2C80 9 14,15 Load Interrupt Mask Immediate (9940}
LIMI 0300 8 12-15 Load Interrupt Mask Immediate
LREX 0D3EO0 7 12-15 Load and Execute
LWPI 02E0 8 Load Immediate to Workspace Pointer
MoV C000 1 0-2 X Move (word)
MOVB D000 1 02,5 X Move (byte)
MPY 3800) - Multiply
NEG 0500 6 02 MNegate (Two's Complement)
ORI 0260 8 0-2 OR Immediate
RSET 0360 Y 12.18 Reset AU
RTWP 0380 7 015 Return from Context Switch
S 6000 1 0-4 X Subtract (word)
5B 7000 1 05 X Subtract (byte)
SBO 1D00 2 = Set CRU Bit to One
SBZ 1E00 2 - Set CRU Bit to Zero
SETO 0700 6 Set Ones
SLA 0ADO 5 0-4 X Shift Left Arithmetic
soc E0D0 1 0-2 X Set Ones Corresponding (word)
SOCB FODO 1 02,5 X Set Ones Corresponding (byte)
SRA 0800 5 0-3 X Shift Right (sign extended)
SRC 0BOO 5 0-3 X Shift Right Circular
SRL 0900 5 03 X Shift Right Logical
STCR 3400 4 0-2,5 X Store From CRU
STST 02co 8 Store Status Register
STWP 02A0 B8 Store Workspace Pointer
SWPB 06CO 6 - Swap Bytes
SZc 4000 1 0-2 X Set Zeroes Corresponding (word)
SZCB 5000 1 0-25 X Set Zeroes Corresponding (byte)
TB 1FO0 2 Z Test CRU Bit
x 0480 6 - Execute
XO0P 2C00 9 6 Extended Operation
XOR 2800 3 02 X Exclusive OR

H-2

w

INSTRUCTION SET, NUMERICAL INDEX

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL) MNEMONIC INSTRUCTION FORMAT AFFECTED
0200 u Load Immediate 8 0-2
0220 Al Add Immediate 8 04
0240 ANDI And Immediate 8 0-2
0260 ORI Or Immediate 8 02
0280 Cl Compare Immediate 8 0-2
02A0 STWP Store WP 8 =
02C0 STST Store ST 8 -
02E0 LWPI Load WP Immediate 8 -
0300 LIMI Load Int. Mask 8 1215
0340 IDLE Idle 7 -
0360 RSET Reset AU 7 12-15
0380 RTWP Return from Context Sw. = 0-15
03A0 CKON User Defined 7 -
03C0 CKOF User Defined 7 -
03EOD LREX Load & Execute 7 -
0400 BLWP Branch; New WP 6 -
0440 B Branch 6 -
0480 X Execute 6 -
04C0 CLR Clear to Zeroes 6 nce
0500 NEG Negate to Ones 6 0-2
0540 INV Invert 6 0-2
0580 INC Increment by 1 6 0-4
05C0 INCT Increment by 2 6 04
0600 DEC Decrement by 1 6 0-4
0640 DECT Decrement by 2 6 0-4
0680 BL Branch and Link 6 -
06C0 SWPB Swap Bytes 6 -
0700 SETO Set to Ones 6 -
0740 ABS Absolute Value 6 02
0800 SRA Shift Right Arithmetic B 03
0900 SRL Shift Right Logical b 03
0A00 SLA Shift Left Arithmetic 5 04
0BOO SRC Shift Right Circular 5 0-3
1000 JMP Unconditional Jump 2 -
1100 JLT Jump on Less Than 2 -
1200 JLE Jump on Less Than or Equal 2 =
1300 JEQ Jump on Equal = -
1400 JHE Jump on High or Equal 2 -
1500 JGT Jump on Greater Than 2 -
1600 JNE Jump on Not Equal 2 -
1700 JNC Jump on No Carry 2 -
1800 Joc Jump on Carry 2 -
1900 JNO Jump on No Overflow 2 -
1A00 JL Jump on Low 2 -
1800 JH Jump on High 2 -
1C00 JOP Jump on Odd Parity 2 -
1D00 SBO Set CRU Bits to Ones 2 B
1E00 SBZ Set CRU Bits to Zeroes 2 —
1F00 TB Test CRU Bit 2 2
2000 coc Compare Ones Corresponding 3 2

H-3

INSTRUCTION SET, NUMERICAL INDEX (Concluded)

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL MNEMONIC INSTRUCTION FORMAT AFFECTED
2400 CZC Compare Zeroes Corresponding 3 2
2800 XOR Exclusive Or 3 0.2
2C00 xOP Extended Operation 9 6
2C00 DCA Correct BCD Addition (9940) 9 0-5,7
2C40 DCS Correct BCD Subtraction (9940) 9 0-5,7
2C80 LIIM Load Interrupt Mask (9940) 9 14-15
3000 LDCR Load CRU 4 025
3400 STCR Store CRU 4 025
38C0 MPY Multiply 9 =
3C00 DIV Divide 9 4
4000 SZC Set Zeroes Corresponding (Word) 1 0-2
5000 SZCB Set Zeroes Corresponding (Byte) 1 025
6000 S Subtract Word 1 04
7000 SB Subtract Byte 1 05
8000 c Compare Word 1 02
9000 ce Compare Byte 1 025
A000 A Add Word 1 0-4
B00O AB Add Byte 1 05
C000 MOV Move Word 1 0-2
D000 MOVB Move Byte 1 02,5
EO0D socC Set Ones Corresponding (Word) 1 02
FO00 soce Set Ones Corresponding (Byte) 1 0-2,5
INSTRUCTION FORMATS
FORMAT 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 GENERAL USE
1 opcobE [B [Tp | DR e 1] SR ARITHMETIC
2 OP CODE l SIGNED DISPLACEMENT JUMP
3 OP CODE WR Ts SR LOGICAL
4 OP CODE Cc Tg SR CRU
5 OP CODE | c R SHIFT
6 OP CODE T SR PROGRAM
7 OP CODE NOT USED CONTROL
8 OP CODE N R IMMEDIATE
9 OP CODE [DR [7s SR MPY, DIV, XOP
OP CODE OPERATION CODE
B BYTE INDICATOR (1=BYTE)
Tp DESTINATION ADDRESS TYPE*
DR DESTINATION REGISTER
Ts SOURCE ADDRESS TYPE*
SR SOURCE REGISTER
C CRU TRANSFER COUNT OR SHIFT COUNT
R REGISTER
N NOT USED X
*TpOR Tg ADDRESS MODE TYPE
00 DIRECT REGISTER
01 INDIRECT REGISTER

PROGRAM COUNTER RELATIVE, NOT INDEXED (SR OR DR = 0)
0 PROGRAM COUNTER RELATIVE + INDEX REGISTER (SR OR DR>0)
n INDIRECT REGISTER, AUTOINCREMENT REGISTER

H-4

S

APPENDIX |

SCHEMATIC OF CABLE TM 990/508

BETWEEN AUDIO CASSETTES
AND TM 990/302 BOARD
P2
GND |— iy BLK P11 (BARREL)Y RD DATA
\
AUDIO| 2 (-2 CLR }TWISTED PAIR
IN e P12 (TIP) BELDFOIL 8761
B |
SHIELD
AUDIO| 4 e CLR R
ouT 7 3 P3-2 (TIP) WR DATA
TO P2 ON 5 o BLK TWISTED PAIR
T™ 990/302| GND — P3-1 (BARREL)/ BELDFOIL 8761
7
Eebak SHIELD—————-I
6
MC1 P4-1 {BARRELI}HD MOTOR
mco |-8 P4:2 (TIP BELDEN 8442
10
MC3 P51 IBAHHEL]}WR MOTOR
12
MC2 P5.2 (TIP) BELDEN 8442

/ - BARREL, PIN1
\ TIP, PIN2

CABLE AUDIO CASSETTE
PLUG SOCKET
RD DATA EAR OR MONITOR

WR DATA AUXOR MICOR LINE IN
RD MOTOR REM
WR MOTOR REM

CAUTION

Do not plug the AUX input and EAR output plugs into the same
recorder at the same time as this may cause ground loop prob-
lems with some recorders.

CATS SI MILSIONE SMLWLE S0 (L) 410 MOILINELSH] OIDIVAINS HInM "8
WIEN IHL AN 30
ASHId BHL NI 38 LOW AV HO AYW LTINS SO NOILLISOSSIO
$1-0 ‘WOILYESJO OIONILXNT IHL ST ANIILS ONVESEO ONODIS &
#1 S ANNOD

O3TEVYNI 0 TIATT ANO = O

_ TdMLE A KILSIDIM SNLYLS OL OIMEALIN ¥ 04 O SLI8 A0
_ CIVEVYNE SLINHHEILNI TV = o

EEe . muum i “0-8 MILEIDIN IDVASHEOM 40 §i-I1 S48 ONY 0 = ANNOD
4 imr 21 S = HEVIN LdNEILNT
SR i i oUER WINM 0 HILSIOIE IDVASHEOM 4O 5171 SLM NI §I LNNOD o e
R ' BAO voca SHYIM O 510 ANNOD LAIMS THL §1 ONVEILO ONODIE IHL 9 NOILJO SV HLIM 01/066 T300M ~ 314 dvii - & G5M NOUd ABEYD - £
e B e A 000 | WO 0 3Tid dvIN ANONIM ¥ 531410345 ONYEIA0 ONOODS 3HL & 01/066 1I00OW-0ID I TIAIEd=0] 00N QIDINAINGD - L HOLYDIONI B4/¥N03 - T
5-0 i av e s =0 510 .ouc.-unu-!._.b . SSIHDOHS NI JOX - § HYHL HILYIHD JILIWHLIEY - |
- -] Si@ L Ll oNeD LY
v-0 | i ooow » 46 ks eyl b et g (135 SL18 40 'ON Q00) ALINVY - § NYHL H3LVIND T¥II007T - 0
£~ sy o0 ooug _ ATHO ¥ HAIM 01/086 TROON T
1Y |m|u| Dl PR ENy O T IMF T - 01/068 T300W ~ SHOLLINELSHI CIOFTIAING 1
-0 i a 000 !
MEVW LA NI 03IAHISIH [aw|ed] x <wlea
_ : e | o o s | 7202 63 P I Y I 1 B
s 3 He s i e sl T & F & 9 % ¥ z 1
b FipEsley T WS W T Rt W e ___ooor - _ 1410045 IV SONVEIHO T ke OTOW e §1 ATNSTE Jei MM DLW SSINOOY SILYIONI - D
¥ 0 AlD i 00D O IASMIIND z-0 . oour Sum° o wox
= L] Ay ooRL _ NOILYNISO OIONILNT L] . 003F & BAON o aox ﬁ.-.gg qud.—.(.—.m
. ainoaea -) cuvo - o x
(3 -0
2 . e iz Wi meanal ool Sash ok SppaSINEE ko B 0N - 0WS LT _
i e N e e e S 3 e e L2 [30%RionioNOSsINOD SI0MIE 135 T Tz [S5 "o " edis
8 . dOX 003z (OHOM] ONIGNOGS IHSOD SIONIE L3S £-0 ' woar S5 = 228
z-0 i HOX ooe? $ILAD d¥mE - . 0290 o Bums —
T t 222 | e B MEANONJOVSSOM VLS _ = 0 o T Eh _ amiS
z i S09 000z — BILSIOIE SNLYLS JEOLS x L] o0 + [1818
—-ao e e = NED WON4 IWOLS -0 L oOFl ¥ 3LOW T DD ul1s
z a1 o004 IWINOOT LHDIE L AIHE -0 [0080 B ILOW DM s
5 £ s com _ e EVWONE ISR L (0 WD S RAIOW DA WS 5
L4 cas ooal (OIONILXI B5W) AHDIN LAIHS (& TF DORG B ALOW Dum [T w
z dal 003t I31A0| DNIONOSSTHNOD SIND 138 70 L 0064 S0° o @308 Siwofi.
e e e T T e R (OHOM) SHIONOYSIHHOD SIND 138 L0 . 0003 29" 8 Food .
|||||||| FLIUINAAILANS _ ve S _SOVE_ _sgion’ We___ YN8 _ , SRR T W
2 ar ooV “sano 135 s [=) oL3% " S0 Wi
z OoNF 0061 _ OuIZ 0L LI NBD 138 - S w031 By zus N2 40 1) IO " aa) oy
o B L R e o R ETST IN0 OL 418 NED 438 z oo - nus o _ ' X .
z NP 0041 20N E e T TET e 0 T o IR SR, ., S I . 1
" M anr ooat |ONOM] LOVELENS (& v o T TDe T o s
(974 “IL0M) WENS ‘LNI WOWA NUNLEE §1-0 L oo - - e _ WX NI Aah w | | [T] | 1003 &0 .
> = L i [E%1 3L0M) NV LIS3N -2 £ L - - A3%W LI b [T~ 3000 40 [
1 = S I O Y I Lo 00F L uviodmiyo__ -0 & OMD g cchg _ INO ALTTL OTsn ioN 1 1003 40 [
= g BT T T T T T o oaTs T T T T (INanaamon S.omL: 3ve3IN P08 it o oaN _ WRUDON NE 2 3003 & 1
z 3r oozi _ AN - & SN um o Aar L] I 3003 40 s
7 1r 0oLl (314G} IAOW 5200 ' oovn -s B anon s S L 3 | 1903 40 ’
r o0t _iauom! 3A0n z-0 [0003 >0 n_ AW _ N0 s L e 1 003 o0 (4
- — —_——_—— — == e e S S _ WILNIOw BOV4SNHOM OL JLvioamwi ovon - § gsme [("L e AN INIIY 1450 OINTHS 1 3003 40 z
£-0 s ous coao (€°1 3L0M) JLNIIX3 ONY WOM GO i-21 ¢ oate LT *3u1 34 swmiry s i W [5 | &] sooow '
Fo - vis 0eYo (T ZLON) IV d¥W OvoT) = ol OFC0 g 3iom T Em aw _
E-0 . 0060 o i v L ' -2 N LD |||I.-||l—.||.|-‘|--|| /N IVENID S L L 4] & “ o - . i . . L] t 13 . L] A1YWEO
e e . wus 2080 T A SR Ilviaawwi ovon 7.0 ¥ aaE | Sum .n.“ _
e R e T L PNSORRG. ot o S U 5 SLVIWHO4 NOLLONHLSNI
9 o 2°1 310N)
oo ek S9L9 _ (Z'1 BLON) HOLLYNILS IO FONYLSIO DHOT a . o3Le L] it
: sal \Z dacomtoso T o neD awon _tE-e v 000 yaion g _ _ WO
LSl] say orLo T1 =481 ALiva 00O arnr T T TRl T T T 0T o sor
e 0 i 3 9 _ i T _ (1= (45 ABNYD NO drnd z 0081 r e 20r
» BdMS 0 10 = FLE) MOTIMIAD ON dWNT z ooel o onr
: e B o T e e o
0 _ 10 = CAS] ABHYD ON amnl £ ooL od ETg
3 1230 orao TYNOLLIGNO DN il & o o dnf
Pe0 L e TS e (B-TL8 QMY 1LS) NYHL SE37 dinr ? o - e ar £d 01 paj0auu0d [euiula | v
K ¥ FET 0950 _ _ U1 * 218 4O 0 = 015) 1¥NOI 5O MO arnf L aori - _od__ _3W
*0 3 ani oEso (0=24% awv 01€) MO dimnl z odwi -~ o4 W Am_.;ﬂ HOLOW HM) auasse) £
-0 . [1=21% WO 0LS) IWNOI WO HOIM dnl z oori - e Inr
= ; u...mz_:_ ”..-MM _ (045 OWY | QLS] MDD T z coui 2 o e (6nid HOLOW QH) 3nasse) (4
_ S (e AL T g N i i | O (E=1L8) NYHL HILYIND drin’ = I+t
2 ; A2 S0 e LR, e ot . ioe _ Zd 01 paloauu0d [BuIlLIa | L
% % oave _ Le3AM E-D " orso = Ani Awwng 0
9 8 oo (oML AG! LNIWIMINI v * o = o Lom
R e e B
TR L x387 (€' 1 3LON) 030 Mg " . @03 g ;
Sum o Ao aoAag
1 EL s W71 310N 026U 1OML ABI LNIWINIIO -0 b o0 - L] IR
HOHD LE' | 3L0N) OVED _ S —— L N Lol o T e L T R - E
st0 e s R pe e dmiv_ (1 310N) 0BED HBONEE 3 & o e T <oz (s
8L 4 e skt L O R T .ONA3Q) SHISWNN 30IA30
3 ‘ £ i OMYHIL0 YIS L L=1d = 5 k]
: 3al { .} 3LOM) oweo (E | 3L0M) MO ¥DOTD - ¢ ovin - = waND
ul 4w ('tason)jogr0 A ——————=—=— 0T siow) ds0 waes - & T e e s
i @13LO0N) 0080 _ 2LVIGIANI I VAMOD t-0 . oazo Vo "
- ® M 03Z0 (31A8) INvamOD VT-0 ' o006 2 o s
“ Seis o520 cm—me e lONOMi3Wvawoo | E-0 |} Goe g g 2 _ n:q w zw
L dMLIS owzo _ HILNIOD IDVESHEOM OYD 1 L HONYEE = " sore = o s
N L (1M MM ONY HINYEE = ko = o -
it i - — i e = W HoWYEE - " oo - ® -
; s D e MO O 220 B Gem _ Aogm Moy
el L lany orzo ALYIOIAMI OOY (& L] s =T [
ol [v ozzo INIVA ILNIOSEY o] oreo = P sav
E-0 ™ " cozo {3.La8) oov -0 ¥ oocE >0] LA
n e ok —a (OwoMm) oov "0 ' soov >0] i
B31034 AV SNLvAL Lvwaod SINOWINK agod 4o e T O3i0344v LvnuOa 300540 SONVER4O SINOWINA (
SNLVLS
_ SINIWNUISN] SYX3] .

ININA3LL0A ONOTV LND

L ((

i s
TEXT EDITOR*
Call: .TE A <DEVNO:-, <~DEVNO >
Commands
G Get source
?P[1st Line], [last line] Print line(s)
?<Line No.> <Statement > Insert line
?<Line No.> Delete line
?R<1st Line> Resequence lines
7K Keep lines
7Q Quit, enter monitor
Errors
21 Transmission error (e.g., checksum)

22 Line number too big

23 EOF detected before G command
24 Buffer too full for new source

25 Command not valid

26 Cannot resequence; K issued

27 Cannot print, 1stline no. > 2nd line no.
28 Cannot print, line number too small
29 Line number too high

30 Buffer too full for new lines

3 Resequence number above 9000
32 Line number to be above 9993

DUMP MEMORY*

.DM,<DEVNO >
?<Start Addr>,<Stop Addr

BAUD RATE OF P3*

SR
?<Baud Rate>
Rates: 110, 300, 1200, 2400, 4800, 9600, 19200 Hz

UPLINK*

UL
?7<LAddr>,<L. Bias>,<L. Length>,<S. Addr>

*All commands end in carriage return

SYMBOLIC ASSEMBLER*
Call: ~
.SAA<DEVNO=>, <DEVNO>, <DEVNO:
/ / /
Source Object Listing
Assembler Directives

AORG Absolute origin
BSS Block starting with symbol
BYTE Initialize byte
DATA Initilaize word
DREG Define registers (R prefix)
DXOP Define XOP
END Program end
EQU Define assembly-time constant
EVEN Place on word boundry

DT Program identifier
Text of ASCII characters

5

:

Invalid symbol
Multiply-defined symbol

Symbol table overflow

Mnemonic size too large

Undefined mnemonic

lllegal register number

Displacement too large (CRU inst)
Displacement too large (jump inst)

Shift count too large

10 Non-increasing location counter (AORG)
1 Byte value too large

12 No single quote to start TEXT string

LN O A WN =

13 IDT over 6 characters
14 IDT not beginning with quote
15 lllegal character in TEXT string

16 XOP number above 15
17 Undefined symbol

18 I/Q Error

19 END directive needed

——————— =

RELOCATING LOADER*

Call:
.RL=DEVNO >
?<Load Addr=,<Bias>,<Length>,< Start Address >

Errors
51 Invalid load tag
52 Checksum error

PROGRAM DEBUGGER*
Call: .DP

Commands
EX Execute
?IC\<Address>,[Bits] Inspect CRU
?IMA<S. Addr>,<E. Addr> Inspect Memory

?IR Inspect hdwr regs
7IWA[Reg. No.] Inspect sftwr regs
?RUA[No. of steps] Run program
?SB<Addr>,[Addr] Set breakpoint
?STA[No. of steps] Set trace

EPROM PROGRAMMER*
Call: .EP
Program EPROM:

?PP<Type>,<M. Start>>,<M. Stop>,<E. Start>,<P/1~,|B. Start|

Compare EPROM to Memory:
?CE - same as above -

Read EPROM into Memory:
?RE - same as above -

Verify EPROM is Erased:
VE<Type>,<S. Addr>,<End Addr>

T™ 990/302 SOFTWARE USER'S GUIDE
USER RESPONSE SHEET

It is our desire to provide our customers with the best documentation
possible. After using this manual, please complete this sheet and mail it,

postpaid, to us. Your comments will be appreciated.

1. Is the manual well organized? Yes __ No___ Comments:

2. What subject matter could be expanded or clarified?

3. Are the SDB commands adequtely covered? Yes_ No___ Comments:

4. Are the system interconnections adequately covered? Yes __ No
Comments:

5. Is the cassette operation adequately covered? Yes __ No Comments:

6. Place an X after the subject(s) that need further explanation:

Text Editor Symbolic Assembler Relocating Loader

Program Debugger EPROM Programmer Other

Comments:

Name

Address State ZIP
School (if applicable) Major Yr

Revision E

FOLD

ATTENTION:

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
MOS MICROCOMPUTER SYSTEMS

BOX 1443

HOUSTON, TEXAS 77001

MICROCOMPUTER SYSTEMS
MAIL STATION 6750

FOLD

FACTORY REPAIR AND EXCHANGE POLICY

I. GENERAL

This policy specifies the conditions upon which a TM 990 product may be
returned for repair subject to the terms of TI's warranty for such product.

WHEN A PRODUCT IS DEEMED ACCEPTABLE FOR REPAIR BY TI AND NO REQUEST HAS BEEN
MADE FOR THE RETURN OF THE SAME SERIAL NUMBERED PRODUCT, TI RESERVES THE
OPTION TO REPAIR OR EXCHANGE THE PRODUCT.

EPROMS CONTAINING CUSTOMER GENERATED SOFTWARE SHOULD BE REMOVED FROM A PRODUCT
PRIOR TO SHIPMENT TO TI. THE REPLACEMENT BOARD MINUS SUCH EPROMS WILL THEN

BE SHIPPED TO THE CUSTOMER. TI ACCEPTS NO RESPONSIBILITY FOR CUSTOMER
GENERATED SOFTWARE SENT IN ON A UNIT TO BE REPAIRED.

II. NORMAL WARRANTY EXCHANGE OR REPAIR

Repair or exchange will be made free-of-charge provided:

i. The customer notifies TI of product failure within the applicable

warranty period (90 days from the date of purchase from TI or from
a TI authorized distributor) and

ii. TI's inspection discloses that the product is defective and that the
defect is not the result of accident, misuse, neglect, alteration,
improper installation, unauthorized repair or improper testing.

THE CUSTOMER SHALL BE RESPONSIBLE FOR PROVIDING PROOF OF THE DATE OF PURCHASE.

III. NON-WARRANTY EXCHANGE OR REPAIR

Non-warranty exchanges or repairs will be made for a charge in accordance with
the schedule set forth in section VII below; provided such product ‘is
‘"repairable."

Product will be deemed "repairable" when the cost of repair does not exceed
cost of replacement. If a product is not "repairable," the customer will be

advised that repair cannot be effected and the product will be returned to the
customer.

IV. SHIPPING INSTRUCTIONS

A. The following information must accompany the returned product. The TI
Factory Repair and Exchange Questionnaire should be used to ensure
that the required information is provided:

Customer name and phone number

Purchase order number (if applicable)
Model number

Serial number

"Ship To" address; instructions for insurance and method of
shipment (unless otherwise specified, TI will ship UPS, insured
for the minimum)

"Invoice To" address

Description of symptoms of malfunction

e Type of service requested

R&E-1

(Note: The customer should retain a record of the model number and
serial number identifying the returned product in the event that tracing
of the product should be necessary.)

B. The product must be returned freight prepaid, F.0.B. TI's Factory
Repair Center at:

Factory Repair Center

TM 99C Microcomputer Systems
Texas Instruments, Inec.

8500 Commerce Park Dr., Suite 110
Houston, TX 77036

C. Should the customer have any questions regarding this policy or the
returned product status, he may contact the factory directly at:
(713) 778-5729.

V. CUSTOMER CONFIGURATION

When the customer has made modifications to the product, repair or replacement
will be "non-warranty."

TI will attempt the repair of such a product provided the customer has
restored the product to its standard configuration. Labor and material will
be charged at TI's then current standard rate for all necessary removals or
repairs to customer-made modifications, if such is required to test the
returned product in accordance with TI's specification for that product. TI
reserves the right to refuse the repair of any product that has been modlfled
such that the conflguration as changed is untestable.

TI accepts no responsibility for additional memory, I/0 terminator devices, or
other devices added to a particular configuration and shipped on a product to
be repaired.

VI. EXPEDITED SERVICE

. Expedited service is available for an additional charge. It is available only
on normal exchanges, subject to availability of replacement product confirmed

by phone prior to shipment to TI. Replacement product will be shipped after
receipt of the customer's defective product.

VII. CHARGES, TURNAROUND TIME AND METHOD OF PAYMENT

Estimated
Charge * Charge * Maximum
(In Warranty) (Non-Warranty) Turnaround

1. Normal exchange/repair N/C $150 10 normal
working days

2. Repair with customer N/A $200 15 normal
configurations working days

3. Expediting charge $50 $50 48 hours

®* Subject to change without notice. When the total estimated repair charge
exceeds the standard charge such repair must have the prior written approval
of the customer.

R&E-2

The customer must send payment, either in the form of a money order or check
(company, cashier, or certified) with the product unless a purchase order is
submitted. Payment must be made payable to Texas'Inspruments.

Product returns from the repair facility shall be made FOB TI factory.

. Transportation and insurance charges (if applicable) will be added on the
invoice.

TI will invoice the customer on the date TI returns the repaired or exchanged
product to the customer.

VIII. WARRANTY

Repaired or exchanged assemblies may contain either new parts or refurbished
parts of like quality and are warranted to be free of defects in material and
workmanship for a period of 30 days from date of shipment, provided such
warranty repair shall not operate to reduce the original product warranty.

THE FOREGOING WARRANTIES FOR GOODS ARE IN LIEU OF ALL WARRANTIES, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND OF ANY OTHER WARRANTY
OBLIGATION ON THE PART OF TI.

TM 990 MICROCOMPUTER SYSTEMS
Tl Factory Repair and Exchange Questionnaire
(Please complete one questionnaire per product submitted)

SHIP 70 | [soLp T0]
I NAME /COMPANY NAME /COMPANY
ADDRESS-LINE 1 ADDRESS-LINE 1
ADDRESS-LINE 2 ADDRESS-LINE 2
CITY STATE ZIP CITY STATE ZIP
'USER NAME USER PHONE NO.() .
m%
(CHECK ONE) IF IN WARRANTY, IS PROOF OF PURCHASE DATE ENCLOSED?
(O WARRANTY [NON-WARRANTY (CHECK ONE) O YES [O NO
i CHECK TYPE OF SERVICE REQUESTED CUSTOMER P.0. NO. AMT. OF PREPAID (3)
. (0 NORMAL EXCHANGE/REPAIR
(J REPAIR WITH CUSTOMER CONFIGURATIONS|MODEL NO. SERIAL NO.
(J EXPEDITE TM 990/
RETURN SHIPPING-PACKING TNSTRUCTTONST INSURED? (CHECK ONE)*[LEVEL OF INSURANCE (5)*
Oyves [Ono
DESCRIPTION OF MALFUNCT ION
f‘%
3 BELOW FOR FACTORY USE ONLY
ORDER REC'D DATE [SUFFICIENT PAYMENT|R/E FRN ORDER SHIP DATE
“ Unless otherwise specified, T1 will ship UPS, insured for the minimum.

R&E-3

P/N 1602102-9701

Please save this portion and return
it with your product should
repair be necessary.

Use this form if the form attached
to the warranty card is lost.

R&E-4

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time
in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or
represent that they are free from patent infringement.

Copyright © 1980
TEXAS INSTRUMENTS INCORPORATED

f

10
{@’5‘: TEXAS INSTRUMENTS

INCORPORATED

Post Office Box 1443 © Houston. Texas 77001
?23333853_;,(:)? Semiconductor Group Printed in USA.

